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CHAPTER I. INTRODUCTION 

Surface and groundwater interaction, in general, is composed of 

those physical relationships that govern the occurrence, source, quantity, 

quality, movement and some other cause and effect relations for this 

phenomenon. More specifically, it is a part of the science of hydrology 

that measures the circulation of water through the atmosphere, to the 

ground surface and then to underground layers of the earth. Since the 

circulation of water through this path (the hydrologie cycle) is so inter­

related in time and space, it is not really possible to distinguish a 

clear division between any two coincident spaces. Therefore, the study 

of the movement of water in each space necessitates the consideration of 

other spaces and their interactions with the space of interest. 

Water is a very important element for living creatures as well as 

for industries, and its essence as a scarce resource urges an overall 

study for allocation among competing uses. Basically, in such a case, 

scientific, engineering and management studies are conducted to find the 

best alternative for a specific use of water. 

Scientific study includes both field and laboratory observations 

and their assembly for formulating a verbal explanation or constructing 

a model to define the interrelated phenomena. In other words, science 

leads to definition of natural laws. 

Engineering attempts include the application of scientific laws 

so that a particular objective can be achieved. The laws that science 

provides for a water resource system are used by engineers to achieve 

some utility or objective. As a matter of fact, the utilization of 
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groundwater requires a solution of hydrologie relationships which define 

the interaction of surface and groundwater. Engineering studies usually 

deal with development, transportation, reliability, cost, maintenance 

and the like for the existing water resources of a region. 

Finally, a management study includes the allocation of the resource 

so that maximum benefit is accrued, or minimum cost is achieved for 

development and utilization. For example, in the case of groundwater, 

the management study will define what type of distribution system should 

be chosen, how many wells are needed, what should be the water quality 

through treatment, and how an operational system is to be scheduled. 

The system of surface water and groundwater interactions is a rela­

tively broad area of hydrology, so that a simple concept may not be 

capable of covering all elements, yet still keep a reasonable amount of 

accuracy. Dealing with groundwater alone, many elements are involved, 

such as surficial aquifers, deep bedrock aquifers, confined or uncon-

fined aquifers, karstic or sandy layers, etc. Each of these charac­

teristics requires specific attention. Therefore, depending on the 

type of study, it must be stated what the objective of the research is 

and how far should the researcher go to accomplish the task. 

The objective of this research is to evaluate a surficial aquifer 

and its interaction with surface runoff, with an objective of constructing 

a general mathematical model to respond to these interrelations. Al­

though this type of work is deterministic in principle, based on the 

probabilistic laws of the nature, the influence of the natural laws 

on prediction also has been studied. Therefore, a part of this research 

effort has been dedicated to this evaluation. To evaluate the application 
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of probabilistic laws to surficial groundwater fluctuations, a study of 

the sequential variation of rainfall in Northwest Iowa was conducted. 

Rainfall variations were defined, from dry-dry to wet-wet sequences. 

Obviously, the interaction between surface water and surficial ground­

water is a complicated phenomenon, and a strong tool is needed. The 

best tool for this situation, to be both practical and reliable, is the 

use of mathematical models. For this reason, a mathematical model 

(hydromodel) was adopted, and adjustments and testing of this model in 

a real basin in Northwest Iowa was accomplished. The basin selected 

for study is the Floyd River Basin, above Alton, which has the approxi­

mate geometry and dimensions of a unit model of interest. Full emphasis 

is put on recharge concepts of surficial groundwater in the basin, and 

the capability of the aquifer to withstand temporary mining or over-

drafting to meet the beneficial water use requirements of the basin. 

The text of this dissertation includes the essential scientific 

theories and definitions, results obtained, and considers the practical 

laws of interactions with necessary discussion. Also, in the last 

chapter, appropriate conclusions, recommendations and advice for 

continuing the research to reach other goals are presented. 

Area Under Study 

Regional aspects 

The area under consideration for this study consists of 12 counties 

in Northwest Iowa, as shown on Figure 1 (after U.S.G.S.). This region 

was chosen as a "water short" area of the state on the basis of hydro-
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meteorological considerations. It does not necessarily comply with the 

division of the state done by the climatological office of the U.S. 

National Weather Service. Indeed, the river basin area under study 

covers 12 counties fully or partially (the eastern counties of the 

region share the area partially as Figure 1 shows), and includes the 

areas of Northwest and West-Central Iowa as labeled by the state office. 

Although some supplementary meteorological studies were done in 

this research study for the entire region, research emphasis was given 

to a smaller area. The basin selected for detailed study is the Floyd 

River Basin at Alton, Iowa, as listed in the U.S. Geological Survey Water 

Supply Papers. This particular basin was selected in order to develop 

a usable model of the hydrologie cycle that would be representative of 

the region. The intensity of the effort required for such model develop­

ment necessitated the adoption of a smaller river basin, compared to the 

12-county region. 

The Floyd River Basin at Alton has a 265-square mile drainage area 

and is located in the northwest Iowa counties of Osceola, Sioux and 

O'Brien. Figure 1 depicts the boundary of the basin. 

The lack of precise or complete data for treating a complex hydro-

system does not limit the investigation towards the development of a 

mathematical model, if the model is constructed in terms of variable 

parameters. The parametric model can be adjusted and "fine tuned" 

following its initial development in a verification phase, so the output 

will conform to the data available. Therefore, the research started on 

the basis of actual field data, using available data for the area as 

necessary to develop a basic model utilizing monthly data. Once 
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developed, it was then subjected to adjustment. 

Information of a general nature will help to identify the area under 

study, and is presented in the following sections. 

Geology 

The region under study is mostly overlaid by lowan drift and par­

tially by Cary-Mankato drift (eastern part of the region). The general 

stratigraphical features of the region have been reported by the Iowa 

Geological Survey and the U.S. Geological Survey (78). Of course, some 

geological discontinuities might exist in some parts of the region. 

The I.G.S. geological column for the region shows that the Precambrian 

and Upper Devonian age rocks are found at a depth of about 650 ft below 

the surface. The Cretaceous Strata extend between the depths of about 

540 to 70 ft. At the upper part of the Cretaceous system is the Dakota 

Formation that extends from the approximate depth of 280 ft upwards to 

a depth of 220 ft. The Graneros shale overlaying the Dakota Formation, 

extends from a depth of 220 to 160 ft and mainly consists of dark grey 

calcareous shale. Greenhorn limestone overlays the Graneros shale and 

extends from the approximate depth of 160 to 140 ft. Carlisle shale 

overlays the Greenhorn limestone, extending from an approximate depth 

of 140 to 70 ft and consists of dark grey, silty hard shale. From the 

depth of about 70 ft up to the surface, the strata of Pleistocene age 

occur, consisting of undifferentiated materials which were glacially 

deposited. This particular formation is of interest in this study be­

cause of the presence of shallow alluvial aquifers. 

This stratigraphical classification as briefly described herein 
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was researched by the ICS and USGS organizations by means of a natural 

gamma log obtained near Hawarden in Sioux County (78). This serves as 

a good representation of the area under study, and specifically for the 

basin under consideration. 

For a precise material classification, appropriate for application 

in the proposed mathematical model, a more detailed geomorphological 

and geohydrological study is needed in the future. 

Hydrometeorology 

Information on climatology and hydrology for the area under study 

can be found in the climatological yearbooks (U.S. National Weather 

Service, formerly the U.S. Weather Bureau) and the U.S.G.S. papers (Water 

Resources Data for Iowa). Some other special publications are available 

such as "Drainage Areas of Iowa Streams" (75) and "Low-Flow Characteristics 

of Iowa Streams" (52). The best data base, collected from many sources 

for Northwest Iowa, is provided by Rossmiller (94). However, it is 

emphasized again that more precise measurements for refined application 

of the model developed in this research are needed to improve the verifica­

tion and estimates made. More information about the input data used 

in the hydromodel development and testing phases will be introduced 

later in this text. 

Statement of the Problem 

Hypothesis 

Northwest Iowa is a region which has little surplus water, inso­

far as surface runoff is concerned. Precipitation varies from 26-28 
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inches annually, and the annual streamflow is from 2 to 3 inches at 

most. Therefore, most of the precipitation infiltrates the soil pro­

file and subsequently is being consumed in the evapo-transpiration 

process. The region does experience good agricultural yields from those 

soils having good soil moisture retention. The sandy, alluvial soils 

suffer under frequent drought stress. 

The hypothesis being expressed and studied is that the shallow 

alluvial aquifers lying in the floodplains of the region can provide 

sustained yields of significant quantities of water if they are 

temporarily mined (short-term overdraft) during the moderate to severe 

drought events, which occur about once in 10-20 years. The questions 

are (1) whether the depth of aquifer is sufficient; (2) is there enough 

water to supply farmsteads in the valley, regional rural water systems, 

communities, and also support crop irrigation on these alluvial soils?; 

and (3) will the shallow aquifer be fully replenished during wet years, 

e.g., will it recover? 

These moderate to severe drought events may be 2 to 5 years in 

total length, and recovery of groundwater levels will depend on (1) 

precipitation, followed by infiltration and percolation from these 

precipitation events, and (2) seepage from the streams into the under­

lying alluvial sands and gravels. Therefore, the sequence of wet 

years required to recharge the system after several drought years with 

large withdrawals is of considerable importance in the planning and 

management of the water resource. Modeling the surface water and 

groundwater hydrology and evaluating the groundwater mining stress 

during drought periods are the major objectives of this thesis. 
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Objectives, then, are as follows: 

1. Evaluate the sequence of wet and dry years on a probabilistic 

basis, determining moderate and severe drought sequences. 

2. Characterize or normalize the valley floodplains and upland 

land surface areas into a characteristic pattern and size 

for the river basins in Northwest Iowa, 

3. Develop an interconnected hydromodel which satisfies the 

water balance requirements, includes surface and ground­

water hydrology and a groundwater extraction model which 

will permit testing the stated hypothesis. 

4. Evaluate a characteristic river basin, verify the model 

and then apply the model developed in the study to a 

variable pattern of demands, including farmstead and com­

munity water supply, regional rural water use, irrigation 

of floodplain lands and possibly industrial use. 
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CHAPTER II. REVIEW OF LITERATURE 

Hydrological Concepts 

Historical review 

Two schools of research have contributed in development of the 

theories in physical hydrology: (1) research on the basis of scientific 

formulation of hydrological phenomena; and (2) research to provide ap­

propriate techniques for measurement of variables. 

Fleming (39) has summarized the development of scientific and technologi­

cal hydrology into four historical areas. These are described below. 

First, the era of 3500 BC-1500 AD. This is the period of the early 

philosophy of primitive measurements and calculations. During this period, man 

was concerned about natural events. Experience and judgment were the basis for 

his investigations. This period was based on a "rule of thumb" approach. 

Egyptians were possibly the earliest people who started the measure­

ment of annual stages in the Nile River as early as 3000 BC. According 

to Biswas (13), water resources networks, conveying channels, and some 

other irrigation installations were developed by Egyptians between 

3200-600 BC. The Persians invented the Kanat system which is still in 

operation in Iran today. 

Some philosophers, such as Plato and Aristotle were aware of 

the hydrological cycle. Romans constructed their famous aqueducts. 

Hero (65-150 AD) stated the relationship between velocity, discharge 

and cross-sectional area. During this era, rain gages existed in India 

(4th century), Palestine (65-150 AD), China (1774 AD) and Korea (1441 AD). 

In summary, these ancient countries initiated the attempts to develop 

water works installations in this early stage. In addition to 
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the above-mentioned devices, the Chinese water ladder, a device 

used for raising surface water to an increased elevation, is a good 

example of these attempts. 

Second, the era of 1500-1800 AD. This is a period for motiva­

tion of developments for scientific hydrology. There had been a lack 

of improvement in the science of hydrology at the end of the previous 

era (200-1500 AD approximately). By the coming of Christ, human 

activities were directed toward moral and theological attempts. There­

fore, a gap in scientific improvements occurred between the two eras. 

The motivation for renewal of scientific hydrology can be attributed 

to the attempts of Leonard da Vinci (1452-1519 AD), who used floats to 

measure stream velocity. This was an early form of modern flow-measurement 

techniques. Palissy (1510-1590 AD) and Kepler (1571-1630) consolidated 

the modern philosophy of the hydrologie cycle. In 1610, Santario intro­

duced a primitive current meter. Later in 1682 Castelli introduced a 

way to measure rainfall, and in 1639 verified Hero's concept of the 

continuity principle (Q = AV). The first recording rain gage was intro­

duced by Wren in 1663 and the important idea of a punched tape mechanism 

for the recording of rainfall pulses was developed by Hooke in 1678. 

He also introduced an improved current meter in 1683. Parallel to 

these physical measurement tools, remarkable improvement took place 

for mathematical calculation devices. John Napier produced a set of 

log tables in 1614 and his numbering rods in 1617 were an initiative 

for the modern slide rule. The concept of a calculating machine was 

introduced by Pascal (1642), and later in 1683 Leibniz improved this 

type of machine. The science of quantitative hydrology was born in 
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Europe in the 17th century in the shadow of measurement and calculation 

techniques. Development of the concept of the rainfall-runoff rela­

tionship is very much due to the efforts and experiments of Perrault 

(1674) and Marriotte (1686). Early concepts of evaporation are due to 

Halley, who conducted many experiments during 1687-1715, using evapora­

tion meters. The science of hydrology and hydraulics progressed rapidly 

by the end of the 18th century. Bernoulli (1738) found pressure and 

velocity relationships; Franklin (1756) investigated oil film suppres­

sion on evaporation. Berberden (1769) found the relationship between 

rainfall and altitude. Chezy (1775) worked out a channel flow formula 

and Venturi (1797) studied the flow current through constrictions and 

expansions. The history of the science has recorded many other pioneers 

in this era. Interested readers may refer to other references. 

Third, the era of 1800-1954. This period has significant importance 

in scientific hydrology. The concept of scale models characterized by 

Smeaton made a revolutionary development in tools for calculations. 

This period (19th and the first part of 20th century), was devoted to 

the improvement of calculation techniques, and a new technique named 

component hydrology was created. In 1812 Charles Babbage invented a 

machine to compute mathematical tables. He called this tool the dif­

ference machine. Later, in 1833 he modified his machine for more auto­

matic operation by using perforated cards. Scheutz in 1834 followed 

Babbage's idea and improved the difference machine. In 1939, Aitken 

of Harvard University used the idea of Babbage and improved the cards 

developed by Hollerth in 1889 to produce the first form of the digital 

computer. A primary all-electronic computer called ENIAC, that was 
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called a first generation computer by scientists, was produced by 

Eckert and Mauchley in 1943. The first memory computer was produced 

at Cambridge University in 1949 on the basis of the Newman concept 

discovered in 1946. The invention of transistors by Bardeen and Bratain 

in 1948 has improved the first generation computers, and the production 

of commercial computers began about 1951. 

It is not possible to enumerate all hydrological tools and their 

development during the period in this review. However, the following 

events are important due to their reference to the subject. 

Smith (1827) developed a theory considering the geologic principles 

of groundwater. In 1856 Darcy presented his famous theory in ground­

water. Mulvaney, in 1851 presented the rational formula (Q = CIA), 

which is still in use for urban design purposes. Also, Dickens in 1865 

introduced a flood formula of the type Q = CA^^ which is still in use in 

modern engineering practice. During this period, statistical methods 

in hydrology began to spread. Hazen introduced the concept of synthetic 

streamflow in 1914 as a contribution to stochastical hydrology. Foster 

applied theoretical frequency curves to engineering in 1924. Gumbel, 

in 1941, defined the extreme value theory in frequency analysis. 

Bernard, in 1944 investigated the relationship between meteorology and 

floods. There are many other scientists who studied and improved the 

science of hydrology. Outstanding were the efforts of Linsley, et al,, 

for applying electronic techniques to flood routing studies. In 

1951 Kohler and Linsley developed the coaxial correlation techniques in 

hydrology which was very important in the practical approach to flood 

forecasting, and usable in flood routing. The effort of Manning (1889), 
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for his famous formula on flow in natural channels is well known. Jervis 

(1836) in snow surveys, Planck (1900) in theory on black body radiation, 

Harton (1915) and Angstrom (1919) in theories of snowmelt processes and 

many other researchers made highly valuable contributions to the advance­

ment of scientific hydrology in this period. A part of the progress 

made in scientific hydrology can be attributed to the efforts of the 

U.S. Geological Survey, in providing a wealth of streamflow data for 

analytical work as well as other studies conducted by USGS researchers 

who applied theories to real world situations. 

Fourth, the era of 1954 to the present. This period is named the 

period of philosophy of interaction of integral hydrology and the com­

puter era. Prior to this period, fundamental techniques in statistics, 

system engineering and analysis, stochastic and deterministic simulation 

were formed. Considerable advancement had been made in the knowledge of 

component hydrology and further progress is being made today. The ad­

vent of third generation computers (large high-speed stored-memory) 

provided an opportunity for the rapid advancement in technology in­

cluding hydrology. During this period, hydrology as a science was 

being related to other disciplines, such as economics, the social and 

political sciences together with some other sciences tied with hydrology. 

The interaction of different disciplines with modern hydrology opens a 

new era of scientific hydrology named water resources. That is, for a 

proper design, operation and forecasting a water system, a multitude 

of sciences is essential. For more information about historical review 

on hydrology, one can refer to George Fleming's "computer simulation 
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techniques in hydrology" (39) as well as other publications given in 

the List of References (13, 50, 79). 

Present methods in data evaluation 

A water resource study consists of a comprehensive evaluation of 

sources that contribute to a system. In other words, to design a 

system, one should consider the most important dominant factors that 

affect the system. Arthur Maass, et al. (79), state that the methodology 

of a system design involves four related steps as follows: 

1. defining the objective of the design, 

2. translating the objectives into the design criteria, 

3. making a plan for a particular water resource system on the 

basis of these criteria, and 

4. evaluating the consequences of the plan developed for the 

system. 

Apart from the overall study of a system, data evaluation is a 

vital part of each study. In engineering as well as management sciences, 

analysis is based upon the observations of the events. The analyst or 

engineer should understand the process so that he can make a hypothesis 

about the system or develop a model for it. Since probabilistic laws 

govern many hydrologie processes, modeling a hypothesis must involve 

these probabilistic components. Therefore, the analyst should be 

familiar with statistics and probability. 

In the 18th century, "mathematical statistics" and "descriptive 

statistics" were developed. The former development deals with the 

error measurement, and the latter one deals with the tabular and graphical 
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presentation of the data. Later, numerical analysis was used to sum­

marize the processes. From those early days to the present time, as 

mathematical statistics grew, more powerful techniques for analysis 

were developed and applied to experimental data. One of these tech­

niques is "statistical inference." Huntsberger and Billingsley (56) 

state this inference as follows: "As long as we refrain from 

making generalizations based on our calculated measures, we are 

only describing what we observed. But as soon as we make an inductive 

generalization, we have passed beyond description and have entered the 

realm of inference." Therefore, the statistical inference incorporates 

mathematical statistics with experimental evidences. This part of 

statistics is a very powerful technique which is characterized by drawing 

conclusions about a population or universe based on observed data drawn 

from it. 

There are many theories available such as "set theory," "experiments 

and sample spaces," "total probability and Bayes theorem," "partitions," 

"finite sample spaces," "enumeration methods," "Markovian approach," 

"general sample spaces," and others, that can handle the problem of 

data evaluation based on a given situation. There is much information 

about these methods in statistics books and references. In this study, 

a particular type of enumeration method and the Markovian approach 

were applied to the precipitation data of northwest Iowa. A general 

brief description for these two methods (enumeration methods and Markovian 

approach) follows. It should be added that in the beginning of this 

research, conditional probability and the Bayes' theorem were attempted. 
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but the results were not satisfactory, and the course of action was 

diverted to the following methods as will be seen in the body of the 

thesis. 

Enumeration methods Before representing these methods, a 

delineation of the nature of probability is needed. Probability is 

expressed as a ratio. The classical concept states that the 

probability of a particular event 'E' is the ratio of the number 

of ways in which that event can occur to the number of possible out­

comes. Therefore, 

P(E) = ^ (1) 

where: r is the number of ways that 'E* can occur, and 

n is the number of possible outcomes. 

This is an exact probability which occurs In a short series 'n' of 

trials. In a long series 'n' of trials, similarly, the relative 

frequency concept states that 

P(E) i ̂  (2) 

where the ̂ ratio is the approximate probability of event 'E ' occurring 'r ' times. 

Since 0 < r < n, in either case 0 < P < 1. 

It is not easy to interpret the extremes of the probability range. 

What do P(E) = 0 and P(E) = 1 mean? The answer to the question depends 

on the type of concept which we are working with. In the classical 

concept, P(E) = 0 states that the event is impossible, whereas in rela­

tive frequency concept it does not necessarily mean that the event is 

impossible. In the relative probability concept, P(E) = 0 means only 
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that it has not occurred during the conduct of the experiment. Simi­

larly, in the classical concept, P(E) = 1 states that the occurrence 

of the event is certain whereas in the case of relative probability 

concept, we are not sure about the certainty of the event occurring. 

We can simply say that it has occurred in all of the trials so far. 

Consequently, in a long series of repeated trials, the approximate 

probability of an event is the proportion of times that the event can 

be expected to occur. 

The branch of probability (in statistics) originates from the idea 

presented in the above paragraph. There are many methods elaborated 

to define, measure and verify the probability in different cases. The 

science of statistics deals with different approaches and technologies 

for more advanced cases. In the meantime, the principal work involves 

the methods by which we should get inquiries about 'r' and 'n.* There 

are some sophisticated counting schemes to find the value of 'r' and 'n' 

in an experiment and define the ratio of r/n as possible outcome for a 

particular event 'E.' Enumeration methods are used in the early mathe­

matics courses. The following methods are used in this procedure, pro­

vided the sample space is already understood. 

Tree diagram Suppose a true coin is to be tossed four 

times. All the possible paths for outcomes are shown below. There 

are (2)^ = 16 possible outcomes, easily obtainable from a tree diagram 

as follows: 

TTTT, TTTH, TTHT, 
12 3 

, HHHH 
16 

(3a) 
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First toss 

Second toss 

Third toss 

Fourth toss 

Permutation One way used for enumeration method is permuta­

tion. A permutation is an arrangement of definite objects. Permutations 

differ from each other when the order of arrangements or their contents 

differ. For example, three objects 'a,' 'b' and 'c' can be arranged 

2 by 2 in six different ways as follows; 

ab, ba, ac, ca, be, and cb 

In general, from 'n* distinct objects, the permutations of 'r' objects 

are obtainable from the following formula 

fî - ^ 

Combination Another way used for enumeration method is a 

combination. A combination is an arrangement of definite objects. 

One combination differs from another only if the content of the ar­

rangement differs. For example, the combination of three objects 

'a,' 'b' and 'c,' 2 by 2, gives only three arrangements as follows: 
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ab, ac, and be 

The following formula gives the number of arrangements of 'r' objects 

from 'n' objects: 

Other important procedures in enumeration method are the "multiplica­

tion principle" (different sets 'A^' each of which are arrangeable in 

'n^' different ways), and the "permutation of like objects" ('K' 

distinct classes of objects with nondistinct objects in each class). 

For more information about these methods, one can refer to the 

mathematics and statistics references. Some of them are given in the 

list of references in this thesis (18, 54, 56). A special type of 

enumeration method used for rainfall analysis in this study is dis­

cussed in the following chapters. 

Markovian approach to probabilistic evaluations The terms of 

'probabilistic' and 'stochastic' will be used interchangeably here­

after in this thesis. Hillier and Lieberman (53) state the stochastic 

process as follows: 

"A Stochastic Process is defined to be simply an indexed 
collection of random variables (X^), where the index 't' 
runs through a given set 'T.' Often 'T' is taken to be 
the set of nonnegative integers, and 'Xj.' represents a 
measurable characteristic of interest at time 't.'" 

One of the strongest tools for analyzing the stochastic process is 

the Markov Model. A Markov process is a special type of stochastic 

process having some particular Markovian properties. A Markov chain 

is a Markov Process with an enumerated (namely, finite or approaching 
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infinity) number of states (26). A set of nonnegative integers or 

nonnegative real numbers is assigned to the time parameters. There­

fore, we may have a discrete time parameter case or a continuous time 

parameter case. As a matter of fact, the definition of Markovian 

property is very restrictive, but in the case of a simple condition 

(discrete time parameter and finite-state space), a stochastic process 

{x^}(t = 0, 1, 2...) is said to be a finite state Markov chain if it 

has the following conditions [Hillier and Lieberman (53)]. 

1. A finite number of states, 

2. The Markovian property, 

3. Stationary transition probabilities, 

4. A set of initial probabilities pjXg = i} for all i. 

A review of science history reveals that the Markov Process is 

named after A. A. Markov who introduced the concept in 1907 with a 

discrete parameter and finite number of states. Kolmogorov introduced 

the initial cases in 1936 and Doeblin improved the concept. Doob per­

formed fundamental work on continuous parameter chains in 1942 and 1945, 

and Paul Levy in 1951 intuitively drew a comprehensive picture of the 

field. 

Assume a stochastic process |x^, t = 0, 1, 2....}, that is, a 

family of random variables, defined on the space^ of all possible 

values that the random variable can assume. The space is called the 

"state space" of the process, and the elements xg^. The different 

values that can assume are called the 'states.' Consequently, we 

have the state variable '3^' and the time variable 't.' To have a 

simple discrete process, the following conditions should be met: 
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1. X = X = 1. 
o o 

CO 

2. P(x) = {x = x), with I p(x) = 1. 
n=0 

3. The conditional distribution of X^^^, given X^ = j, is the 

sum of j independent random variables, each having the same 

probability distribution as X^. 

A simple discrete process can be thought of as representing the 

growth of a population (population in this statement may refer to the 

statistical meaning of the word). That is, the integer valued random 

variable 'X^' represents the number of individuals in the population in 

the generation. In order to study the sequence of X^, X^, X^ .... 

some expression for probabilities that the population size has in 

(t + l)th generation is needed. This expression of probability is 

thought to be a known population size in previous generations. Hence, 

we search the conditional probability 

^^Vl " \+l l^t " ""t' \-l " Vr ^o = *o = 

(6) 

The process is called a Markov Chain if the structure of the stochastic 

process {x^, t = 0, 1, 2 ....} is such that the conditional probability 

distribution of X^^^ depends only on the value of X^ and independent 

of all previous values. Therefore, the more precise form of Markov 

chain is: 

° \ 

(7) 

As mentioned before, one of the conditions in a finite-state Markov 

Chain is a stationary transition probability (condition No. 3). The 
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transition probability gives the probability that the process will 

move from state 'S.,' to state '' for every pair of states. As 

the process moves through any finite number of states, a set of 

probabilities describes the situation of the process. For the sake of 

simplicity, the transition probabilities are shown in a matrix form as 

follows : 

P = 

P P 
00 01 

P P 
10 12 

P ^ P , 
nO nl 

On 

In 

nn 

(8) 

The elements of this matrix show the probability of going from state 'i' 

to state 'j' in the next step. Each row of this matrix sums to one 

and the elements of the matrix are positive. Therefore, each row is 

called a "probability vector" and the matrix itself called a "sto­

chastic matrix." The above 'P' matrix is called a one-step transi­

tion probability whereas the n-step transition probability P^Y^ 

can be found by the Chapman-Kolmogorov equations as follows 

[Hillier and Lieberman (53)]: 

M 
p9?^= Z p^/^p(? for all 'i,' ' j ' and 'n* and 0 < v < n. 
ij K=0 Ik kj - -

(9) 

The equations state that when the process moves from state 'i' 

to state 'j' in 'n' steps, it will be in state 'K' after exactly ' v' 

steps, considering the condition of 0 < v < n. This P^^^pj^^ 
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represents the conditional probability that starts from state 'i' and 

the process moves to state k after ' v' steps and then to state 'j' 

in (n - v) steps. It can be proven that n-step transition probabilities 

are obtainable from one-step transition probabilities recursively. 

Consequently, 

= P.P.P P = P.P*"^ = P^P*"^ = P*"^P, etc. (10) 

There are many discussions and manipulations about the Markov 

chain. This thesis is not intended to provide the comprehensive 

mathematics of the Markov chain; however, for more information, one 

can refer to the books exclusively written about the theory and 

application of the Markov chain. Since this research uses the ap­

plication of the transition matrix, it is advisable to give a brief 

description about some more important themes in the Markov chain. 

The list of references in this paper gives the name of several books 

related to the subject used for this discussion and useful for re­

viewing the topic (12, 26, 53). 

Derivation of transition probabilities The heart of 

any Markov Chain model is its transition probabilities, noted as 

previously. There are two approaches for derivation of transi­

tion probabilities: 1) conceptual derivation and 2) statistical 

estimation. Although in some cases parameters are obtained empirically, 

it is important to realize that in a mathematical model, the probabilities 

should be derived theoretically from a probability distribution. The 

general problem is a lack of suitable data showing individual properties 

of the variables. In this case, conceptual derivation of the transition 
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probabilities should be used. Analysis depends upon the criteria 

available and the ability of the analyst to derive a set of probabilities. 

Enumeration methods can be of help in this approach. 

Statistical estimation is used where a detailed knowledge about 

the process is not available. In this case, the parameters must be 

statistically estimated from either aggregate occurrence data or from 

observations of individual movements between states. In some cases 

both approaches might be used as were used in this research. Again, 

the analyst is a decision-maker wanting to apply the best overall 

statistical method in this contest. The following theories of the 

Markov Chain are important and have been used for rainfall analysis 

in this study in certain ways. 

First passage time In the Markov stochastic process, 

it is desirable to find out the number of transitions made by a 

process to move from state 'i' to state 'j' for the first time. 

Previous sections gave a discussion of the n-step transition probabili­

ties. The length of time for moving from state 'i' to state 'j' for 

the first time is called the first passage. In particular conditions 

where i = j, the first passage is called 'recurrence time' for state 'i,' 

that is, the first passage time is just equal to the number of transi­

tions until the process returns to the initial state 'i,' i.e., the 

first passage time is equal to the number of transitions until the 

process returns to the initial state 'i.' The transition probabilities 

define the relative frequency distributions of the process. The general 

equations for the first passage time from state 'i' to state 'j' are 

as follows (53): 
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' 'ij 

•(n) _ (n) (1) (n-1) (2) (n-2) (n-1 
ij ~ ij ij jj ij jj ij ^Pjj 

These are very important equations because they enable one to com­

pute the probability of a first passage time from state 'i' to state 

'j' in "n-steps," using a one-step transition matrix. Three important 

features in Markov Chain probability distributions are: 

1. Recurrent state is one where: 

2 f(?̂  = 1 (12) 
n=l 

The equation implies that once the process is in state 'i,' 

it will return to state 'i' again. 

2. Absorbing state is one where = 1. This condition im­

plies that when the process falls in absorbing state, it 

will never leave it again. Absorbing state is a particular 

case of 'recurrent state.' 

3. Transient state is one where: 

2 < 1 (13) 
n=l 

The equation implies that once the process is in state 'i,' 

it will never return to state 'i' again on the basis of some 

positive probabilities. 

Like other situations in probability measurement, the computation 

of 'f^?^' for all n values is not easy, whereas it is relatively simple 
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to compute the expected first passage time. The following set of 

equations gives the expected first passage time ' j * [Hillier and 

Lieberman (53)]: 

œ, if 2 f(^) < 1 
n=l 

(14) 

Z nf(°\ if £ = 1 
n=l n=l 

The would satisfy uniquely the equation: 

In general, when 'j = 1,' is called 'expected recurrence time.' 

If jj-. . = the recurrent state is called 'null recurrent state' and 

if |j,. . < °=, the recurrent state is called a 'positive recurrent state. ' 

Long run properties of Markov chain One of the most 

important properties of Markov Chain is its 'steady-state probabilities.' 

That is, there is a limiting probability that the process will be in 

state 'j' after a long number of transitions. This probability is 

independent of the initial state. To reach the steady-state probabili­

ties, a Markov Chain should be an irreducible and ergodic one. In 

this case it is possible to show that 

lim. = TT^ (15) 

n-̂  

The following set of equations gives the 's fEillier and Lieberman (53)] 

a) > 0 (16a) 
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M 
b) rr. = 2 TT.P.., for j = 0, 1, 2 

J i=0 ^ 
M (16b) 

M 
C) 2 TT, = 1 

j = 0 ^ 
(16c) 

The relation between the steady-state probabilities and the expected 

recurrence time is: 

That is, the ' s are reciprocal of 's. The set of equations for 

TT. ' s consist of (M + 2) equations in (M + 1) unknowns. Since it has 

a unique solution, one equation is redundant and can be deleted. It 

should be noted that the equation of 

is not redundant and should always be considered for system solution. 

As has been mentioned already, there are many other properties for 

using the Markov Chain in handling stochastic processes. Among 

them the continuous Markov Chain parameter has many applications in 

mathematical programming, particularly in some queueing models. 

For a detailed description of the procedures, one should refer to ap­

propriate references. 

Other approaches for data evaluations There is a useful ap­

proach in mathematical programming to solving a system problem. 

The controversial "optimization techniques" (an additive term for 

other approaches for data evaluation) have made a revolutionary 

advent to conquer the dilemma involved for solution of multivariable 

problems in systems engineering. Since "systems engineering" is a kind 

TT M (17) 

M 
2 = 1 
j=0 j 

(18) 
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of art and science approach, it depends on the systems engineer to 

devise a method for the best overall decision-making. "Systems 

analysis" or "operation research" performs the science part of systems 

engineering, whereas much of the art does not come from the texts; 

rather, it depends on the engineer who applies previous experience 

to obtain the best overall outcome. The term "optimal decision" 

has a deep philosophy in systems engineering, and it is obtainable 

through the use of optimization techniques. These optimiza­

tion techniques can be viewed as a system with hundreds of equations 

and thousands of variables to be solved. While it may take days 

or years for a high-speed computer to obtain the best combination for 

decision-making, optimization techniques will offer the ways by which 

the same answer will be reached in a few minutes using an appropriate 

computer algorithm. The technique is based on elimination of many 

inferior combinations by inspecting the data. 

Operations research is a valuable tool in mathematical programming 

today and has many applications in water-resource engineering. Systems 

engineers and scientists apply operations research methods such as 

"linear programming," "transportation programming," "queueing models," 

"nonlinear programming" models, etc. to solve a water-resource system 

and evaluate the economical, managerial, engineering, sociological 

and political consequences of a water-resource system. Since there 

is no room in this report to define these methods and illustrate 

their applications, the Appendix A gives a glossary of the important 

methods in mathematical programming that are in common use in 

water-system engineering. Also, the list of references presents 
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some important books in water-system engineering (13, 50, 79), and the 

interested people are directed to the specialized articles written in 

appropriate journals such as the ASCE Technical Journals, AVJRA 

Bulletin of Water Resources, etc. 

Miscellaneous studies of northwest Iowa 

In northwest Iowa, like any other part of the state and the 

nation, hydrologie data acquisition and research studies have been 

documented by administrative authorities and academic institutions. 

In the case of state and federal authorities, and the county and state 

level offices as well as the federal commissions, these programs have 

been carried out through legal and governmental channels. The results 

of these studies done by the counties, state (IGS) and federal (USGS, 

ses and WB) authorities, contributed measurably to the development of 

the resources of the region. These agencies contributed in the area 

of data collection and processing, in addition to practical field 

research based on development pressures and needs. The results of 

their investigations are published annually and distributed as open 

file reports. This study and its model development were accomplished 

using their data, which were used directly or indirectly to develop 

the mathematical functions. References Nos. of (7), (20), (21), 

(27), (70), (74), (93), etc. of the reference list in this thesis 

give some of the important field research studies accomplished by 

state and federal agencies. Additional hydrogeological studies in 

northwest Iowa (78) were done recently by G. A. Ludvigson and B. J. 

Bunker of the IGS and add to the hydrogeological data base of the 
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area. Their studies cover general geology, geological control on water 

availability, pumping tests, etc. for this region. 

In addition to those published materials (96, 101, 102, 103, 115) 

given in the list of references in this thesis, an M.S. study accomplished 

by Michael Meyer (82) , for the lower part of the Floyd River basin in­

cludes morphological, hydrogeological and hypothetical characterization 

of the aquifers. His study indicates that the saturated thickness of 

the sands and gravels within the thesis area (lower part of the Floyd 

River basin) varies between 0 to 80 ft. An average depth of 30 ft of 

alluvial material in the flood plain area was selected for the current 

study of the Floyd River basin. Some other assumptions such as the ef­

fective width of flood plain, hydraulic conductivity, etc. made for this 

study are based on his research report. 

Although the current research effort is highly local and specific, 

the regional study efforts and results of Rossmiller (94) served as 

the foundation for the hydromodel work. His study includes a broad 

information base, gathering and processing of data for the region 

and a general mathematical model (goal programming approach for socio-

economical trade-off in northwest Iowa). It can be cited as the 

initial comprehensive effort for mathematical modeling in the 12-county 

region. Indeed, this current hydromodel research is a continuation 

of his initiation of field research in a specific location. As far 

as academic research is concerned, the existing water and related 

land-use problems existing in the area along with the desired improve­

ment and development of the area's resources, and hydromodels for 

defining the hydrologie cycle offer a challenge among researchers who seek ap-
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propriété research objectives. If this challenge continues, an expanded level 

of knowledge will be built up in years to come for this area of the state. 

Fundamental Concepts and Equations of Groundwater Movement 

Before advancing to the fundamental concepts and equations re­

lating to groundwater movement, it is advisable to give a brief 

definition of theories involved in estimating soil moisture content. 

The amount of water existing in the soil profile is referred to as soil 

moisture. Soil moisture is replenished through infiltration. The 

term infiltration simply refers to the entry of water through the 

soil surface and into the soil profile. The dimension of infiltration 

is volume per unit of time per unit of area (inches per hcur, etc.). 

There are some differences between infiltration, capillary movement 

conductivity and hydraulic conductivity, so the term infiltration 

should not be confused with the two latter terms. Infiltration is 

the sole source of soil moisture which provides the needed source of 

water to sustain the growth of vegetation through the évapotranspira­

tion process and supplies the groundwater to wells, springs and also 

contributes partially to surface stream flow. The soil surface separates re­

ceiving rainfall into the direct overland flow and into the infiltration process. 

Some part of the water passes through the soil profile and replenishes the 

groundwater. The following definitions will help one to recognize some of the 

most important variables in soil moisture and groundwater movement. 

1. Hygroscopic moisture is that of water in soil which is 

being held tightly on the surface of soil particles by 

adsorption forces. 
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2. Capillary moisture is that water in soil which is being held 

by forces of surface tension as continuous film around 

particles and in the capillary spaces. 

3. Gravitational moisture is that water in the soil profile 

which can move freely under the gravity force and can be 

drained out of the soil. 

4. Porosity is the percentage of the void spaces relative to 

the total volume of the soil. 

Porosity may be divided into two types such as capillary porosity 

and noncapillary porosity. The porosity changes with soil structure 

and texture. To advance the discussion further toward the water move­

ment in the soil, a recognition of soil moisture potential is also 

needed. The dimension of work per unit mass is used for the soil 

moisture potential. But the common expression for soil moisture 

potential is given in terms of the column of water that a given soil 

potential can hold. Sometimes it may be expressed by equivalent 

atmospheres of pressure. According to the available literature (99), 

the following list summarizes soil moisture potentials: 

Soil moisture 
equilibrium Tension equivalent to 

point Cm of water Ergs per gram Atm. 

Ovendry 10^ - 98,000 x 10^ 10,000 

Wilting point 14,125 138.524 X 10 
5 

14.125 

Field capacity 501 - 4.9098 X 10 
5 

0.501 

Saturation 1 0.00098 X 10 
5 

0.001 
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The following list gives the variation for different types of 

soil moisture: 

Type of Tension equivalent to 
soil water Cm of water Ergs per gram Atm. 

Hygroscopic 
water 10^ - 10^ - 9800 X 10^ - - 98 X 10^ 1000 - 10 

Capillary 
water lo"̂  - 10^ - 98 X 10^ - - 0.98 X 10^ 

0
 

1 o 1 

Gravitational 
water 10^ - 1 - 0.98 X 10^ - - 0.0098 X 10^ 0.001 

Saturation 
water equal 
or less than 1 - 0.0098 X 10^ 0.001 

5. Specific yield is the fraction or percentage of water which 

can ultimately be released from storage in a water table 

aquifer per unit horizontal area and per unit decline of the 

water table. This definition is used exclusively for dis­

charging conditions. However, in the case of recharging 

conditions, the same definition is held except that the phrase 

"added to" and the word "rise" should be substituted for 

"released to" and "decline," respectively. 

6. Coefficient of storage is a dimensionless number which is 

the ratio of the volume of the water that the aquifer releases 

from or takes into storage, to the unit volume of the aquifer. 

The unit volume of the aquifer in this case is a product of 

unit surface area by a unit decline or rise of head. 



www.manaraa.com

35 

7. Permeability is the rate of flow of water in appropriate units 

(usually gallons per day) under a hydraulic gradient of 

1 ft/ft through a cross-sectional area of one square foot 

at the predominant temperature of water. 

8. Coefficient of transmissivity is the product of the coefficient 

of permeability by the entire thickness of the aquifer (T = KD). 

It is an indication of the capacity of an aquifer for trans­

mitting the water through its entire thickness. 

There are more intricate definitions about the naming of the water 

bearing strata and their classification, properties and boundaries. 

This study does not present all such definitions. However, the list 

of references gives some of the appropriate books and papers in this 

context (24, 55, 117). 

Basic Equations in Groundwater Movement 

In general, the movement of moisture in the soil is taking place 

in response to the potential gradient in accordance with the following 

equation: 

V . - K ̂  (19) 

which states that the rate of movement V is proportional to the potential 

gradient of ̂  . In the above equation K is the soil conductivity, 0 

is the existing potential and the L is the distance along the path of 

the greatest change in potential. The negative sign indicates that 

movement occurs in the direction of the decreasing potential. A closer 
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look at the above equation reveals the analogy between this equation 

and those of Ohm's law for flow of electricity and Fourier's law for 

flow heat. Therefore, to work out the appropriate relationship 

describing the groundwater movement, a broader knowledge of hydro­

dynamics and ability of mathematical manipulation is needed. From 

hydrodynamics, the Bernoulli and continuity equations should be 

considered in order to provide their application in the groundwater 

field. From a mathematical point of view, an ability of transforma­

tion and application of partial differential equations to the hydro­

dynamics equations is needed. Although some types of relationship 

for groundwater movement can be developed mathematically and theoretically, 

solutions may not be achieved. That is, there may not be a general 

analytical solution with which to solve the equations. The 

analyst should then go further and introduce a graphical or a numerical 

solution to the relationships. For this reason, the use of modern 

computer technology is sometimes essential, and it will make the numerical 

solutions practical. 

As was mentioned earlier, two fundamental equations of hydro­

dynamics, namely, the Bernoulli and continuity equations, are widely 

used in groundwater movement. The familiar Bernoulli equation is 

P 

Y 
(20) 

and the familiar continuity equation as 

Q = VA (21) 
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are combined to produce one of the most important and precious equations 

in groundwater movement called Darcy's equation. Although Darcy's 

equation is a universal equation in groundwater movement, it has 

also an equivalent importance in hydrodynamics for computation of the 

friction factor. Darcy, Weisbach and others have proposed the fol­

lowing equation to compute the friction loss in a flow path: 

\ " FAL (22) 

•In the Bernoulli equation, the segment (P/y + Z) is referred to as the 

piezometric head. A combination of Bernoulli and continuity equations 

leads to the Darcy equation as: 

q = - Z) (23) 

for a unit cross section. 

Where: K = hydraulic conductivity of the soil, L/T 

2 2 
y = pg = specific weight of fluid, M/L T 

p. = dynamic viscosity of the flowing fluid, M/LT. 

The variable (P/y + Z) is a useful variable in practical cases 

because the depth of water in a piezometer is P/y and Z is the eleva­

tion of the terminal point of the piezometer. Therefore, the level of 

the water in a piezometer is a direct indicator of the piezometric head. 

The term P/y can be written in the form of P/fg which includes the 

density of the fluid. In the general form of Darcy's law, p can be 

either a constant or variable. In the case of groundwater, it is 

usually assumed that p is constant. 
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Application of the Darcy's law to three-dimensional flow of an 

incompressible fluid through a porous medium with some assumptions and 

simplications, results in the derivation of Laplace's equations as 

follows : 

This equation states that the second partial derivatives of the potential 

with respect to x, y, and z, sum to zero. Also, the Laplace's equation 

in groundwater describes steady flow in confined aquifers. This condi­

tion is frequently assumed in aquifer studies or frequently can be ap­

proximated with enough accuracy. Therefore, the condition applies to 

the situation where piezometric heads are not changing with time. The 

Laplace equation, which has broad application in physics and engineering 

works, has been studied by mathematicians and scientists, and sophisti­

cated methods are available for its solution, particularly in the case 

of two-dimensional forms. 

To derive the basic equation for groundwater movement, in Cartesian 

coordinates, the principle of conservative of mass and Darcy's law 

should be applied. The first step, for an infinitesimal volume of 

mass, say with dimensions of dx, dy and dz, the mass continuity equa­

tion is: 

(24) 

Derivation of Three-Dimensional Groundwater Movement 

è( pS) 

ôt 
(25) 
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3 
where; P = density of fluid, M/L 

V = resultant velocity vector of directions x, y and z, L/T 

dA = a vector representing the affected areas through which 

2 
the flow is passing, L 

S = volume of fluid existing in the space of dimensions dx, 

3 
dy and dz, L . 

Let's separate the V's and dA's into their preassuraed directions 

of X, y and z. Equation (25) becomes as follows; 

j(9\)dA^ + + l(pVjdA_ + g(pV_)dA_ + §(pVjdA^=^ (26) 
2M 

z' z = 

where: M = pS and consequently 2M will represent pôS or ô( pS) = 

According to the continuity equation, each element at the left 

side of Equation (26), produces a flow in the amount of dq. Therefore, 

in terms of mass: 

(pV )dA = pdq , (pV )dA = Pdq and ( PV )dA = pdq (27) 
^ X X ^x y y y z z ^z 

Considering the fact that flow is a product of velocity by the 

area normal to flow, we will come up with: 

dq* ' dy ' dz = 0% (28) 

Similarly, 

dq • d • d = Q and dq • d • d = Q (29) 
y X z y X y z 

taking into account all planes on the control volume (dx • dy • dz), 

Q = Q„ + Q + Q . The net rate of mass change would be Q - Q. X -^2 ° ^out ^in 

or vice versa depending on the desired direction. This net change is 
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equal to - ̂  if we desire the flow to be positive when mass is being 

depleted. In terms of mass flow rate, and for the limit condition. 

Equation (26) becomes: 

[ô(pdq^ • dy • dz) + ô( pdq^ • dx • dz) + ô( pdq^ • dx • dy)] 

= - (30) 

Multiplying the inside and outside of the bracket of the left side of 

Equation (30) bydxdydz, we will come up with 

pq^ pq, ^ 
[ + ô(—-)]dxdydz = - (31) 

Inside the bracket, each term is subject to further simplification. 

That is, 

Since water is considered an almost incompressible fluid, the second 

term on the right side of Equation (32) is too small and can be dropped 

from the equation. This simplification will also take care of the 

barometric influences, so that Equation (32) will be simplified 

as follows: 

Darcy's equation states that in a nonhomogeneous, anisotropic aquifer, 

Sh 
q^ = - . Therefore, combining Equations (31) through (33) and 

rearranging them, we can come up with 

'i t> + i i ° pd.dyt(St) <3") 
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The next step is to convert the mass flow into the equivalent value in 

terms of piezometric head (h). For this arrangement, the relations 

between volume of water (S), mass flow (M), storage coefficient 

(Sg) and the piezometric head (H) should be viewed. 

The relation between mass flow and applied pressure is as 

follows (117): 

dM = (dxdydz) [ 0p(c^ + g)dp] (35) 

where: 0 = porosity in percent 

2 
op = pore-volume compressibility factor, L/M/T 

2 
P = water compressibility factor, L/M/T 

2 dp = pressure applied, M/LT 

dx, dy, dz and p are as defined before. 

The relation between applied pressure and piezometric head is as 

follows : 

dp = pgdh (36) 

The relation between storage coefficient and the change in 

volume of water is as follows: 

= tedfe % - + » (37) 

where: ds = change in volume of water contained in considered unit 

volume of aquifer. 

Combining Equations (35) through (37), we will come up with 

(considering the limit condition, of course): 
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cM = p(dxdydz)Sg8h (38) 

and finally substituting Equation (38) into Equation (34), we will 

get 

ox ^ oz 

To obtain Equation (39), another simplification has been taking place. 

That is, the differential term of (k -^), for example, has been 
2 ^ ^ py 

simplified into the form of k . This is fine, of course, if we 
* Sx 

had a one-dimensional condition. But in the case of a three-dimensional 

condition, this simplification can be made for three directions if 

and only if we have homogeneous media. Of course, from a practical 

point of view, this simplification is allowed. Consequently, Equation 

(39) is applicable for homogeneous and isotropic conditions. However, 

one more simplification allows us to write Equation (39) as follows: 

4 + 4 + 4 4  ( 4 0 )  
ox cy oz 

which theoretically should be used for homogeneous and isotropic condi­

tions. If we set the left side of Equation (40) equal to zero, i.e. 

4 + 4 + 4 - °  
àx ây ÔZ 

we have introduced the Laplace's equation in the groundwater equation. 

According to literature available, application of the three-

dimensional groundwater equation can be appropriate. Laplace' s equation ap­

plied to three-dimensional groundwater problems will define the steady flow 

in a confined aquifer. That is, the replenishment rate is just equal 
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to the outflow rate. Since the relation between S^, S and b (aquifer 

thickness) is 

5 = S^b (42) 

the differential equation applied to the whole thickness becomes: 

ox dy oz 

and introducing the transmissivity coefficient T = kb, the final 

equation will be 

6 + A + A s A (44) 
â.2 ^2 ,^2 T at 

Equation (44) is the groundwater equation for Cartesian three-

dimensional conditions. In some studies it may be needed to derive 

the groundwater equation for conditions other than the Cartesian 

condition, i.e., for spherical or cylindrical conditions. The procedure 

is the same except for the fact that the relevant coordinates must be 

considered. In many applications -the groundwater hydrologists consider 

the aquifer to be of constant thickness and flow to be horizontal 

or parallel to the x-y plane. This assumption is referred to as two-

dimensional groundwater planes, which is as follows: 

^  + ( 4 5 )  
ay'  ̂» 

Equation (45) describes groundwater movement in two-dimensional space 

and time. This equation has many applications in groundwater studies. 

Furthermore, in nonconfined aquifers like that considered in 

this thesis (glacial shallow aquifer), we will not be concerned with 
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aquifer thickness only. The height of water in the aquifer also 

should be considered. That is, instead of thickness, the equation 

should be derived in terms of elevation of water (H) in the aquifer. 

Following the differential equation principles and considering two-

dimensional condition, the final equation will be (55): 

I [A6 + . s f (46) 
ÔX ày 

which is the two-dimensional differential equation for unconfined ground­

water flow under homogeneous and isotropic conditions. As will be 

seen later, a simpler form of equation (one-dimensional) was used in 

this study to develop the mathematical model for the system under 

study. 
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CHAPTER III. STOCHASTICAL AND PROBABILISTIC STUDIES "METHODOLOGY" 

Rainfall-Runoff Analyses 

As described previously, the science of statistics provides a 

way to estimate the probabilities of future hydrologie occurrences, 

no matter how mother nature creates the events. In other words, 

techniques available from the science of statistics provide an op­

portunity to the analyst to choose the best method for analyzing a 

given situation. 

The normal way for treating a probabilistic case is to assume 

that the chance of an event occurring is known. The analyst then 

proceeds to define the rules that govern the situation by combining 

the events, or otherwise considering the results of a particular 

experiment. This analysis will lead to a conclusion that a certain 

sequence is more likely to occur than another. According to statistical 

studies, the relative deviation from the most probable result has a 

tendency to decrease when the number of trials increases. 

Some cases in statistical studies are more or less controllable 

by conducting an experiment. For example, consider the outcome of 

tossing a coin or drawing a card from a deck of cards or even in more 

complex problems such as experimenting with the rate of birth and 

death in demographic studies. It seems that statistical rules have 

some types of control imposed on them. But the natural events in 

hydrology are not necessarily controlled to a high consistency by 

statistical rules. This difficulty becomes apparent when we realize 

that the actual data may not fit a theoretical distribution exactly, 
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and it is frequently impossible to trace how or why the differences 

exist between the actual and theoretical. This is true in most 

probabilistic investigations. However, this should not discourage the 

analyst from attempting to obtain the best inference. One hopes to 

form a reasonable opinion about what is happening with natural events, 

provided the available techniques are being used in an appropriate 

way. Since hydrology events are of a random nature that will not be 

repeated exactly, the best overall results will be obtained if the most 

appropriate analysis is being used. 

Methodology should be in accordance with the principles of 

scientific hydrology. Consequently, we should not limit ourselves 

to theoretical statistical consistency and seek a particular confidence 

limit. Rather, we should rely equally on various outcomes to represent 

boundary situations, etc. For this reason, in conducting a probabilistic 

study of the hydrological events included in this study, different ways 

were tried as far as applicable to this study, and the investigation 

was stopped when an overall reasonable answer or alternative answers 

were achieved. Of course, one should realize that the events studied 

are not the ultimate end. These events will continue along with the 

progress in hydrology and statistics as well, unless the natural laws 

in hydrology are defined precisely, which seems unlikely. 

The statistical study for this chapter covers the following 

sections : 

1. Stochastic analysis of the rainfall patterns in the region 

under study. 

2. Statistical analyses for rainfall-runoff relationships 
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including two approaches as follows: 

a .  Curve number approach and 

b. Regression analysis approach. 

The following sections discuss the methodology that applies to the 

conduct of this part of the research. It should be added that these 

statistical studies led to an overall reasonable conclusion so that 

the results obtained helped to modify the hydrological mass balance 

model. This model will be called a hydromodel, and was developed 

to forecast the hydrological cause and effect behavior of the Floyd 

River basin at Alton, Iowa. The methodology applied in this research 

opens the door for further developments in this area that other re­

searchers may pursue and improve. The following section deals with 

stochastical probabilities, which represent a challenge in the study 

of hydrological behavior. 

Stochastical Study of Northwest Iowa Rainfall Cycles 

Data for study 

Out of 44 rainfall gaging stations available in the 12-county 

region under study, eight stations were selected for stochastical 

study. The ones selected were those that: (1) had the longest dura­

tion of record; (2) were evenly distributed over the region; and 

(3) had other hydrological data available, such as temperature and 

rainfall intensity. Figure 1, page 4, shows the location of these stations 

and Table 1 gives the name and the length of available record for them. 
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Table 1. Name, location, and the length of record for rainfall gaging 
stations under study 

Years of record 
No. Station County Precipitation Temperature 

1 Rock Rapids Lyon 82 29 

2 Lake Park Dickinson 62 64 

3 Sheldon O'Brien 23 64 

4 Spencer IN Clay 21 64 

5 LeMars Plymouth 92 84 

6 Storm Lake Buena Vista 89 29 

7 Sioux City 
WB AP 

Woodbury 100 86 

8 Onawa Monona 90 23 

Although at some of the stations there were relatively long periods 

of record, there also were some missing data for some years during 

the overall period of record. An attempt was made to fill in the 

missing data; however, the risk of introducing more error was cautiously 

avoided. That is, if the missing data were located among the first 

one-third of the record, that early part was dropped from the dura­

tion. This is the reason that the length of data which was considered 

for analysis is not the same as the values given in Table 1. 

To choose the most appropriate method for analysis, several 

methods such as relative probabilities, mathematical expectations. 

Bayes formula, etc., were attempted. However, none of them were 

successful for this purpose. Finally, a combination of relative 
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probability together with enumeration methods (see Chapter II) 

was used. 

Method of analysis 

As customary in certain statistical analyses, the mean and the 

standard deviation were selected as statistical variables for comparison. 

To divide the available data in appropriate groups, the following 

categories were established from annual precipitation data; 

1. The precipitation depth which occurred in the range of 

(a) mean minus one standard deviation and (b) almost zero 

(trace), is considered to be dry-dry. In other words, 

those years experiencing such a depth of precipitations 

will be categorized as "dry-dry" years. 

2. The years having a precipitation depth in the range of 

(a) mean minus one standard deviation and (b) mean minus 

one-third of standard deviation will be categorized as "dry" 

years. 

3. The years having precipitation depth in the range of (a) mean 

minus one-third of standard deviation and (b) mean plus one-

third of standard deviation will be categorized as "normal" 

years. 

4. The years having a precipitation depth in the range of 

(a) mean plus one-third of standard deviation and (b) mean 

plus one standard deviation will be categorized as "wet" 

years. 

5. The years having a precipitation depth in the range of 
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(a) mean plus one standard deviation and (b) larger depths 

(as large as may have occurred), will be categorized as 

"wet-wet" years. 

Figure 2 shows the range of variations for defined limits. 

These limits were chosen to provide about the same number of events 

in each category for the period of record. The results were satisfactory. 

However, a more extensive statistical study might be conducted to de­

fine other limits. Having decided on these limits, some preliminary 

work was needed for proper arrangement to ease computer application 

to obtain the transitional probabilities. The use of "SAS" (Statistical 

Analysis System) package, available in the ISU Computation Center, 

was advantageous. Since there was not a unique "SAS" program available 

to perform all needed computations, an additional algorithm was 

written. This combined program categorizes the precipitation events 

in accordance with the assigned limits ("dry-dry" through the "wet-

wet" ranges) and gives the monthly and annual transitional matrices as 

well. Due to hydrological data and time limitations, the monthly 

transitional probabilities were obtained by comparing consecutive 

months. In the case of annual events, the interannual occurrences 

were considered. 

Computerized Table 2a gives the categorized monthly and annual 

precipitation values for the Spencer station where : DD, D, N, W and 

WW represent the "dry-dry," "dry," "normal," "wet" and "wet-wet" 

categories, respectively. Computerized Tables 2b through 21 give 

the computed monthly transitional matrices and Table 2m represents 

the annual transitional matrix for this station. Since there are 84 
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Figure 2. Range of variations for defined limits of the precipitation 
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Table 2a. The categorized monthly and annual precipitation values for the Spencer station, northwest Iowa 
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3 0  1 9 4 8  0 . 0 5  D O  1 . 3 1  w  3 7  0 0  3 .  3 9  w  3 . 1 6  N  5 . 6 1  w  3 . 3 5  N  3 .  0 3  N  0 . 7 6  0 0  1 - 5 7  N  1  .  7 4  0 . 6 2  0  2 4  . 9 6  0  

3 1  1 9 4 9  1  .  7 3  W W  0 . 3 8  0  5 8  N  1  . 4 1  0  4 . 4 3  W  4 . 4 3  N  2 . 9 7  N  2 .  3 5  0  4 .  8 9  w  1  . 2 3  D  0 . 0 1  0 0  0 . 4 0  0  2 5 . 8 1  N  

3 2  1  9 5 0  0 . 6 8  N  0 . 4 7  0  9 4  D  1 . 1 6  0  3 . 2 1  N  3 . 0 2  0  6 . 4 2  0 . 6 9  0 0  3 .  1 8  N  0 . 9 7  0  0 . 2 4  0  0 . 3 5  0  2 1  . 3 5  D O  

3 3  1  9 5 1  0 . 5 1  N  2 . 6 3  W W  2 9  W W  5 . 0 7  W W  5 .  1  7  W  6 .  8 2  W W  6 . 7 7  W W  6 «  5 2  W W  3  . 5 9  N  1  . 7 4  N  0 . 3 3  o  0 . 7 1  N  4 4 . 1 5  W W  

3 4  1 9 5 2  1  . 6 6  W W  0 . 4 3  o  5 5  N  1 . 1 9  0  2 .  7 3  D  4 . 2 4  N  3 . 9 0  N  4 . 4 4  w  0 . 9 5  0  0 . 0 0  0 0  0 . 5 2  0  0 .  3 6  0  2 1  . 9 7  0  

3 5  1 9 5 3  0 . 7 7  N  1 . 3 6  w  9 4  W W  3 . 3 3  w  1 . 9 1  D  7 .  7 5  W W  2 . 2 7  0  3 . 3 9  N  0 . 9 8  0  0 . 4 6  0 0  1  . 4 6  N  1  . 0 3  2 7 . 6 5  N  

3 6  1 9 5 4  0 . 2 0  D  1 . 8 1  W W  6 7  N  3 .  1 8  w  3 . 2 0  N  7 . 8 5  W W  3 . 1 6  N  6 . 6 5  W W  2 . 6 2  N  3 . 9 9  W W  0 .  1  9  0 0  0 . 2 6  0 0  3 4 . 7 8  W W  
3 7  1  9 5 5  0 . 2 7  0  1 . 1 9  w  3 4  D O  2  . 6 3  N  1 . 8 3  0  3 .  2 6  0  4 . 6 8  W  0 . 6 0  0 0  1  . 8 0  D  1 . 3 1  0  0 . 2 7  0  0 .  6 0  N  1 8 , 9 1  0 0  
3 8  1 9 5 6  0 . 5 9  N  0 . 3 5  D  0  8 5  0  1  . 8 1  0  2 . 6 3  0  2 . 6 7  0  4 . 2 2  W  5 .  6 2  w  0 . 3 8  0 0  l  . 2 9  0  2 . 7 4  W W  0 . 3 3  0  2 3 . 4 8  0  

3 9  1 9 5 7  0 .  1 6  0  0 . 2 3  0  2 9  N  0 .  7 9  0 0  5 . 8 4  W W  4 . 4 7  N  2 .  1 8  0  3 . 4 5  N  2 . 7 2  N  2 . 7 2  w  2 . 6 1  W W  0 . 4 6  0  2 6 . 9 2  N  

4 0  1  9 5 8  0 . 3 4  0  0 . 2 7  o  0  4 6  0 0  3 .  2 2  w  1  . 2 7  D O  3 .  7 7  N  2 . 1 7  0  1 . 1 3  O J  0 . 7 8  0 0  0 .  1  7  O O  0 . 6 3  0  0 . 2 0  0 0  1 4 . 4  1  0 0  
4  1  1  9 5 9  0 . 2 9  0 I  . 5 9  w  2  1  4  w  0 . 7 3  D O  1  1 . 4 0  W W  3 . 2 4  0  0 . 1 7  0 0  3 . 6 5  N  3 . 4 7  N  1  . 9 2  N  1 . 7 7  w  1 . 7 5  W W  3 2 .  1  2  w  

4 2  I  9 6 0  0 .  7 3  N  0 . 4 9  0  4 0  N  2 . 4 7  N  6 . 9 9  W W  2 . 2 2  0 0  3 . 8 0  N  3 . 4 3  N  4 . 0 2  N  0 . 5 9  0  1  . 0 3  N  0 . 9 0  N  2 8 . 0 7  N  

4 3  1  9 6 1  0 . 2 0  D  2 . 2 7  W W  3  6 7  W W  1  . 6 5  0  3 . 4 1  N  1  . 5 1  0 0  6 . 2 6  W W  1  .  9 5  0 4 . 0 4  N  1  . 4 7  N  0 . 7 7  0  l  .  1 0  w  2 8 . 3 0  N  

4 4  I  9 6 2  0 .  3 2  O  3 . 1 1  W W  I  6 8  N  1 . 1 3  D  2 . 8 5  D  6 .  1 0  w  6 . 8 7  W W  5 .  5 9  W  1 . 7 1  D  1  . 0 2  O  0 . 3 9  D  0 . 2 5  D O  3 1 . 0 2  w  

4 5  1  9 6 3  0 . 5 6  N  0 . 7 7  N  1  3 1  N  1  . 0 5  0  2 . 2 0  0  2 . 9 2  0  4 . 9 3  w  2 . 3 1  0  2 .  1 5  0  2 . 2 3  W  0 . 0 4  0 0  0 . 4 5  0  2 0 . 9 7  0 0  

4 6  1  9 6 4  0 . 3 6  0  0 . 0 6  0 0  1  O S  0  4 . 4 5  3 . 9 4  N  3 .  7 3  N  6 . 0 0  W W  4 . 6 2  w  8 . 7 7  0 . 6 9  D  0 . 2 7  0  1  . 2 4  3 5 .  I  8  W W  

4 7  1 9 6 5  0 . 5 6  N  1 . 7 4  W W  2  7 0  W W  3 . 5 9  w  5 .  1 5  W  2 .  1 0  0 0  1  . 5 4  0  4 , 1 5  N  7 . 9 6  W W  0 . 6 1  D  0 . 6 8  0  0 . 4 7  0  3 1  . 2 5  w  
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Table 2a. Continued 

R A I N F A L L  D A T A  F O R  S P E N C E R  N O R T H W E S T  I O W A  1 1 1 2 5  T H U R S D A Y ,  F E B R U A R Y  1 4 *  1 9 8 0  4  

F  N  D  

J  E  0  0  E 
A  9  A  C  V  C  A  

N  R  M  A  U  T  E  E  N  

Y  U  U  A  P  J  J  G  S  O  M  H  N  

0  E  A  A  R  R  M  U  U  U  E  B  H  U  H  0  H  U  

0  A  H R  H  R  M  C  M  1  M  A  M  N  M  L  H  S  M  P  1  E  1  E  1  E  1  A  

S  R  1  Y  2  Y  3  H  4  L  5  Y  6  E  7  Y  8  T  9  T  0  R  1  R  2  R  3  L  

4 8  1 9 6 6  0 . 6 0  N  0 . 5 9  0  0 , 8 0  0  1  . 5 4  0  3 . 0 4  N  2 . 3 9  D  2 . 0 0  0  2 . 7 1  0  0 . 7 8  O D  1  . 6 5  N  o.to D O  0 . 7 9  N  1 6 . 9 9  0 0  

4 9  1  9 6 7  0 .  9 5  w  0 .  3 2  0  0 . 4 1  0 0  2 . 9 3  3 . 3 5  7 . 9 2  0 . 4 5  D O  0 .  6 9  D O  0 . 4 4  O D  I . 2 4  o  0 . 2 0  D  0 . 76 N  1  9 . 8 6  D O  

5 0  1  9 6 8  0 « 5 4  N  0 . 1  3  0 0  3 . 2 2  0 0  2 . 4 1  N  2 . 4 5  0  3 . 0 6  0  5 . 9 0  W W  2 . 3 5  D  6 . 8 3  W W  4 . 6 7  W W  0 . 5 4  D  1  . 2 9  W  3 0 . 3 9  W  

5 1  1 9 6 9  I  . 4 4  W W  1  . 7 7  W W  I  . 4 7  N  1  .  3 4  0  5 . 0 5  W  7 . 7 3  W W  7 . 5 4  W W  6 . 0 3  W W  1  . 4 1  0  2 . 4 8  w  0 . 2 4  0  1  . 5 3  W W  3 6 . 0 3  W W  

5 2  1 9 7 0  0 .  1 5  0 0  0 . 2 3  0  I  . 8 9  N  1 . 7 3  0  5 . 5 7  W W  2 . 6 7  0  1  . 4 8  D  1 . 3 0  D O  3 . 8 7  N  6 . 0 6  W W  2 . 0 4  W  0 . 9 4  N  2 7 . 9 3  N  

5 3  1 9 7 1  0 * 1 6  0  2 . 3 5  W W  1  . 1 3  0  1  .  0 0  D O  2 . 2 7  0  5 . 4 6  w  6 . 3 1  W W  1  . 0 6  D O  1  . 5 0  0  4  . 3 9  W W  2 . 1 1  w  0 . 4 7  O  2 8 . 2 6  N  

5 4  1 9 7 2  0 . 3 5  D  0 . 5 8  0  1  . 0 9  0  3 .  3 0  W  3 . 4 3  N  2 . 4 9  0  6 .  1 8  W W  2 . 3 9  0  3 . 0 4  N  2 . 6 2  w  1  . 3 0  N  1  . 5 4  W W  2 8 . 3 1  N  

5 5  1 9 7 3  1 * 1 7  w  0 . 5 4  0  2 . 6 2  W H  4 .  7 0  W W  4 . 4 7  W  2 . 0  1  0 0  3 .  1  1  N  4 . 0 3  N  6 . 2 1  W W  2 . 0 3  N  3 . 3 7  W «  1  .  0 6  w  3 5 .  3 2  W W  

5 6  1 9 7 4  0 . 1 3  D O  0. 1  0 0 0  1  , 2 0  0  1 . 5 6  0  2 .  3 8  0  2 . 6 4  0  0 .  8 4  D O  4 . 0 7  N  1  . 5 1  D  1  . 3 1  0  0 . 6 7  0  0 . 3 2  o 1  6 . 7 3  0 0  

5 7  1 9 7 5  1 . 6 1  W W  0 . 4 0  0  2 . 1 5  w  6 .  8 7  W W  4 . 3 1  w  6 . 5 4  W W  0 . 2 2  D O  1 2 .  1 3  W W  0 . 7 9  0 0  0 . 3 7  0 0  2 . 7 5  W W  0 . 2 2  O D  3 8 . 3 6  W W  

5 8  1 9 7 6  0 . 1 4  0 0  0 . 6 8  N  3 . 7 1  W W  1  . 0 5  O  2 . 1 5  0  2 . 7 2  0  1  . 2 2  0  0 . 5 6  0 0  2 . 6 1  N  1  . 1 5  0  0 .  1 3  0 0  0 . 5 8  D  1 6 . 7 0  D O  

5 9  1 9 7 7  0 . 2 9  0  0 . 7 5  N  4 . 6 0  W W  3 .  9 5  w  2 . 4 4  0  2 . 2 1  0 0  2 . 6 1  0  5 . 1 8  w  4 . 2 0  w  3 . 5 0  W W  3 . 1 1  W W  0 . 5 9  0  3 3 . 4 3  W  

6 0  1  9 7 8  0 . 1 9  0  0 . 2 7  D  0 . 5 7  0  3 . 9 5  w  2 . 6 0  0  3 . 9 8  N  8 . 9 1  W W  2  . 2 9  D  I  . 5 2  0  0 . 3 7  0 0  1  . 0 8  M  0 . 3 0  0  2 6 * 0 3  H 
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Table 2b. Computed monthly transitional matrix, J-F 

JANUARY FEBRUARY 

FREQUENCY 
PERCENT 
ROW PCT 
COL PCT DORY I  DRY I  NORMAL 1  WET U«ET 

TOTAL 6 

1 0. 00 
22 

36.67 21 
13 
,67 

10 
16.67 

9 
15.00 

TOTAL 

ODRY 1 1 
1.67 1 

25.00 1 
1 6 . 6 7  1  

1 1 
1 .67 1 

25.00 1 
4.55 1 

1 1 
1 .67 1 

25.00 1 
7.69 1 

1 1 
1 . 6 7  1  

25.00 1 
10.00 1 

0 1 
0.00 1 
0.00 1 
0.00 1 

4 
6.67 

DRY 2 i 
3.33 i 
8 .  3 3  1  

33.33 1 

5 i 
8.33 1 
20.83 i 
22.73 1 

7 1 
11.67 1 
29.17 I 
53.85 I 

5 1  
8 . 3 3  1  
20.83 1 
50.00 j 

5 ! 
8.33 I 
20.83 1 
5 5 . 5 6  I  

24 
40.00 

NORMAL 3 1 
5 . 0 0  1  

2 1.43 1 
50.00 1 

5 1 
8.33 i 
35.71 i 
22.73 1 

3 1 
5.00 1 
21.43 1 
23.08 1 

1 1 
1 . 6 7  1  
7 .  1 4  I  
10.00 ] 

2 1 
3.33 1 
14.29 ! 
22.22 1 

14 
23.33 

WET 0 1  
0 . 0 0  1  
0.00 j 

0 . 0 0  1  

7 1 
11.67 1 
70.00 1 
31.82 1 

1 1  
1 .67 1 

1 0 . 0 0  i  
7.69 i 

2 i  
3.33 1 
20.00 1 
2 0 . 0 0  1  

0 1  
0 . 0 0  i  
0 . 0 0  1  
0 . 0 0  1  

10 
16.67 

WWET 0 1 
0.00 1 
0.00 i 
0.00 I 

4 ] 
6.67 { 
50.00 i 
1 8 . 1 8  i  

1 1 
1 .67 ! 

12.50 j 
7.69 1 

1 I  
lo67 j 

12.50 1 
10.00 I 

2 1 
3.33 ! 

2 5 . 0 0  1  
2 2 . 2 2  I  

8 
13.33 

60 
l O O . O O  
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Table 2c. Computed monthly transitional matrix, F-M 

FEBRUARY MARCH 

FREQUENCY 
PERCENT 
ROW PCT 
COL PCT DORY (DRY 1 NORMAL 1 W E T  I W U E T  1 TOTAL 

DORY 2 1 4 1 0 1 0 i 0 1 6 
3.33 1 6.67 1 0.00 1 0.00 1 0.00 1 10.00 

33.33 1  66.67 1 0.00 1 0.00 I  0.00 1 
28.57 1 22.22 1 

o
 

o
 

•
 

o
 1 0.00 1 0.00 1 

DRY 3 1 7 1 7 1 2 1 3 1  22 
5.00 i 11.67 1  1 1.67 1 3.33 1 5.00 1  36.67 
13.64 1 31.82 1  31 .82 I  9.09 1  13.64 1  
42. 86 j 38.89 1  35.00 1 40.00 1 30.00 ! 

NORMAL 0 1  0 1  8 1  2 i 3 1  13 
0.00 j 0.00 1  13.33 1 3.33 1  5.00 1  21 .67 
0. 00 1  0.00 1  61 .54 i 15.38 1 23.08 1 
0. 00 1 0.00 1 40.00 1 40.00 1  30.00 1 

WET 2 1  4 1 2 1 1 1 1 1 1 0 
3.33 I 6.67 1 3.33 j 1.67 I 1.67 ! 16.67 

20.00 j 40.00 1 20.00 1 10.00 1 10.00 1 
28.57 1 22.22 1 10.00 i 20.00 j 10.00 1 

WWET 0 1 3 1 3 1  0 1 3 1  9 
0. 00 i 5.00 1  5.00 i  0.00 1 5.00 I  15.00 
0.00 1 33.33 1  33.33 1  0.00 j 33.33 1  
0.00 ! 16.67 1  15.00 1  0.00 1 30.00 1  

TOTAL 7 18 20 5 10 60 
1 1 .67 30.00 33.33 8.33 16.67 100.00 
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Table 2d. Computed monthly transitional matrix, M-A 

MARCH APRIL 

FREQUENCY| 
PERCENT 1  
ROW PCT j 
COL PCT jDDRY |DRY |NORMAL |WET jWWET | TOTAL 

DORY 1 0 I O I 4 I 2 I 1 I 7 
I 0.00 I O.OO I 6.67 I 3.33 | 1.67 \ 11.67 
1 0.00 I 0.00 1 57.14 I 28.57 | 14.29 j 
j 0.00 ; O.OO 1 44.44 j 14.29 j 11.11 | 
i 1 i i + + 

DRY I 3 I 8 I 1 I 31 31 18 
J  5.00 I  13.33 J  1.67 j  5.00 | 5.00 J  30.00 
I  16.67 I  44.44 | 5.56 | 16.67 \ 16.67 1  
I  33.33 I  42.11 } 11.11 I  21.43 j  33.33 | 
+ 4- + + + + 

NORMAL I 2 I 8| 4 | 5j 1 I 20 
j  3.33 1  13.33 I  6.67 1  8.33 | 1.67 | 33.33 
I  10«00 I  40.00 i  20.00 I  25.00 j  5.00 | 
I  22.22 I  42.11 1  44.44 | 35.71 1  11.11 1  

WET I 3 I O I 0 I 1 I 1 I 5 
I 5.00 I 0.00 I 0.00 1 1.67 j 1.67 | 8.33 
I 60.00 I 0.00 I 0.00 I 20.00 j 20.00 j 
I 33.33 I 0.00 I 0.00 1 7.14 j 11.11 | 
+ + + + + + 

WWET I 1 I 3 I 0 I 3 I 3 I 10 
I 1.67 I 5.00 I 0.00 1 5.00 f 5.00 | 16.67 
1 10.00 I 30.00 I O.OO j 30.00 j 30.00 j 
I  11,11 I  15.79 I  0.00 I  21.43 | 33.33 j  
+ + 4- + + + 

TOTAL 9 19 9 14 9 60 
15.00 31.67 15.00 23.33 15.00 100.00 
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Table 2e. Computed monthly transitional matrix, A-M 

APRIL MAY 

FREQUENCY| 
PERCENT I 
ROW PCT I 
COL PCT jDORY I DRY (NORMAL |WET |WWET | TOTAL 

+ 4- +• + + 

DORY 1 2  I 1 I 2 I 1 I 3 I 9 
I 3.33 I 1.67 1 3.33 | 1.67 | 5.00 j 15-00 
1 22.22 I 11.11 1 22.22 | 11.11 I 33.33 | 
1 28.57 1 5.26 | 15.38 | 7.14 | 42.86 | 

DRY I  2 I  8 I  3 I  5 I  l |  19 
1 3.33 I 13.33 I 5.00 | 8.33 ) 1.67 | 31.67 
1 10.53 j 42.11 1 15.79 | 26.32 j 5.26 | 
1 28.57 I 42.11 1 23.08 | 35.71 | 14.29 | 

NORMAL I 0 I 2j 2 | 3 | 2| 9 
I 0.00 I 3.33 I 3.33 ) 5.00 | 3.33 | 15.00 
1 O.OO 1 22.22 I 22.22 j 33.33 | 22.22 | 
I 0.00 I 10.53 I 15.38 | 21.43 j 28.57 | 
^ +. + + + + 

WET I 2  1  7 I 3 I 1 1  1 I  14 
I 3.33 1  11.67 1 5.00 | 1.67 | 1.67 | 23.33 
j 14.29 I 50.00 I 21.43 | 7.14 | 7.14 | 
1 28.57 1 36.84 1 23.08 j 7.14 | 14.29 | 

WWET I 1 I 1 I 3 I 4j 0 I 9 
I 1.67 I 1.67 i 5.00 1 6.67 ) 0.00 | 15.00 
I 11.11 1 11.11 I 33.33 I 44.44 | 0.00 | 
I  14.29 1  5.26 I  23.08 j  28.57 j 0.00 | 
+ + + + + + 

TOTAL 7 19 13 14 7 60 
11.67 31.67 2io^7 23.33 11.67 100.00 
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Table 2f. Computed monthly transitional matrix, M-J 

MAY JUNE 

FREQUENCY 
PERCENT 
ROW PCT 
COL ACT j DORY 1 DRY 1 NORMAL 1 WET 1 WWET 1 TOTAL 

Mil — • . I— " — "1 •" +—— — — — — —'  • f r  —  —  —  —  —  ~  +-— — — — —  +— — —  +— —  — —  + 

DORY 1 2 1 1 1 2 1 0 1 2 1 7 

1 3.33 i 1.67 1 3.33 1 0.00 1 3.33 ! 11 .67 

1 28.57 1 14.29 1 28.57 1 0.00 1 28.57 I 
1 18.18 j 5.56 1 22.22 1 0. 00 1 18.18 1 

-i— — + 

DRY i 2 1 7 1 4 ! 4 1 2 1 19 

1 3.33 1 11.67 1 6.67 1 6.67 1 3.33 I 31 .67 

1 10.53 1 36.84 1 21.05 I 21 .05 1 1 0.53 1 
1 18.18 1 38.89 1 44.44 1 36.36 1 18.18 1 

mm — —» -V —« ̂  ' — —• — *•-— — — — — — —  +— + —  —————— + 

NORMAL 1 2 1 5 1 1 j 2 1 3 1 13 

I 3.33 j 8.33 ! 1.67 1 3.33 1 5.00 1 21.67 

i 15.38 i 38.46 1 7.69 1 15.38 1 23.08 1 
j 18.18 1 27.78 1 11.11 ! 18.18 1 27.27 1 
 ̂ " • 1 — •*" — '• ~ + — " — • —  — — —  — ——— + —  — — — — — —  

WET 1 4 i 3 1 1 1 2 1 4 1 14 

1 6.67 1 5.00 1 1.67 1 3.33 1 6.67 1 23.33 

1 2 8.57 1 21.43 1 7. 14 1 14.29 1 28.57 \ 
] 36.36 1 16.67 1 11. 11 1 18.18 I 36.36 1 

WWET I 1 1 2 1 1 1 3 1 0 1 7 

! 1.67 I 3.33 1 1.67 1 5.00 i 0.00 ; 1 1 .67 

1 14.29 1 28.57 ! 14.29 1 42.86 1 0.00 ! 
I 9.09 I 11.11 1 11.11 1 27.27 1 0.00 1 

TOTAL 11 18 9 1 1 11 60 

18.33 30.00 15.00 18.33 18.33 100.00 
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Table 2g. Computed monthly transitional matrix, J-J 

JUNE JULY 

FREQUENCY 
PERCENT 
ROW PCX 
COL PCT ODRY 1  DRY 1 NORMAL 1 WET IWWET 1  TOTAL 

ODRY 2 ] 3 J 2 1 3 1  1 1  1 1 

3.33 1 5.00 1 3.33 1 5.00 1  1.67 1  18.33 

IS. 18 1  27.27 I  18.18 1 27.27 1  9.09 1  
16.67 j  20.00 1 20.00 1 27.27 J  8.33 1  

DRY 5 1 6 I  0 1 3 1 4 1  1 8 

8-33 1  10.00 i 0.00 i 5.00 1 6.67 1 30. OO 

27.78 I 33.33 1 0.00 1 16.67 1 22.22 1 
41 .67 i 40.00 i 0.00 1  27.27 1 33.33 1 

NORMAL 2 I 2 1 3 1 0 i 2 1 9 

3.33 1 3.33 1 5.00 1 0.00 I 3.33 1 15.00 

22.22 i 22.22 1 33.33 j  0.00 1 22.22 1 
16.67 1  13.33 1 30.00 1 0.00 j 16.67 1  

WET 1 I 2 1 3 1  2 1 3 1  1 I 

1 .67 1 3.33 i 5.00 1 3.33 1  5.00 1  18.33 

9.09 1  18.18 1 27.27 i  18.18 1 27.27 1  
8.33 1 13.33 i 30.00 1 18.18 1 25.00 1  

WWET 2 1  2 i  2 1 3 1  2 1  1 1 

3.33 1 3.33 ! 3.33 1 5.00 1  3.33 1 18.33 

18. 18 1 18.18 1 18.18 1 27.27 1 18.18 i 
16.67 j 13.33 1 20.00 1 27.27 1 16.67 1 

TOTAL 12 15 10 1 1 12 60 

20.00 25.00 16.67 18.33 20.00 100.00 
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Table 2h. Computed monthly transitional matrix, J-A 

JULY AUGUST 

FREQUENCY 
PERCENT 
ROW PCT 
COL PCT DORY DRY 1 NORMAL )WET IWWET I TOTAL 

DDRY I 1 i 3 1 3 1 3 1 2 1 12 

1 1.67 1 5.00 1  5.00 1  5.00 1 3.33 1 20.00 

1 8.33 j  25.00 j  25.00 I  25.00 1 16.67 1 

1 11.11 1 17.65 1 20.00 1 27.27 I 25.00 1 

DRY 1 4 1 3 1 5 1 2 1 1 1 15 

1 6.67 ! 5.00 1 8.33 1 3.33 i  1.67 1 25.00 

1 26.67 1 20.00 1  33.33 1  13.33 1 6.67 1 
j 44.44 1 17.65 1 33.33 1 18.18 i 12.50 1 

NORMAL ] 0 1 3 ! 4 i 1 1 2 1 1 0 

1 0.00 1 5.00 1 6.67 1 1.67 j 3.33 1 16.67 

1 0.00 1 30.00 1 40.00 I 10.00 1 20.00 I  
1 0.00 1 17.65 1 26.67 1 9.09 1  25.00 1 

+ 

WET 1 2 1  3 1 3 1 3 I  0 1  1 1 

1 3.33 1 5. 00 1 5.00 1 5.00 1  0.00 1  18.33 

1  18.18 1  27.27 j 27.27 j 27.27 1  0.00 1  
I  22.22 j  17.65 1  20.00 \ 27.27 1  0.00 1  

WWET I  2 1  5 i  0 1  2 1 3 1 12 

j 3.33 1 8. 33 j 0.00 ! 3.33 1 5.00 1 20.00 

1 16.67 1 41 .67 1 0.00 1 16.67 1 25.00 1 
! 22.22 1 29.41 i 0.00 i 18. 18 1 37.50 1 

TOTAL 9 17 15 1 1  8 60 

15.00 28.33 25.00 18.33 13.33 100.00 
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Table 2i. Computed monthly transitional matrix. A-S 

AUGUST SEPT 

FREQUENCY! 
PERCENT 1 
ROW PCT 1 
COL PCT 1 ODRY 1 DRY 1  NORMAL 1 WET 1 WWET 1  TOTAL 

DORY 1 2 1  2 1 3 1  1 1 I 1  9 

3.33 1 3.33 I  5.00 1  1 .67 1  1.67 1  15.00 
22.22 1  22.22 ! 33.33 j  11.11 I  1 1 .11 1  
25.00 1  11.76 j 15.00 1  16.67 i 11.11 1  

DRY 1 1  1 3 1 7 1  2 i 4 1  17 

1.67 1 5.00 1 11.67 1  3.33 1  6.67 1  28.33 
5.88 1  17.65 I  41.13 J  11.76 1 23.53 1  

12.50 j 17,65 i  35.00 J  33.33 1  44«44 1  

NORMAL 1 2  1 5 1 5 1  1 1  2 1  15 
3.33 1 8.33 j  8.33 1  1 .67 1  3.33 1  25.00 

13.33 1 33.33 1 33.33 1  6.67 1 13.33 1  
25.00 1 29.41 1  25.00 1  16.67 1  22.22 I  

WET I  1 1 3 1 3 1  2 1  2 1  1 I 
1 .67 1 5.00 j 5.00 1  3.33 1 3.33 1  18.33 
9.09 1 27.27 1 27.27 1  18. 18 1 18.18 1  
12.50 i 17.65 1 15.00 1  33.33 1 22.22 ! 

+ 

WWET 1 2  1 4 1  2 1  0 1  0 1  8 
3.33 j  6.67 ! 3.33 1 0.00 j 0.00 1 13.33 

25. 00 1 50.00 I 25.00 1 0.00 1 0.00 1 
25.00 1 23.53 I 10.00 1 0.00 1 0.00 1 

TOTAL 8 17 20 6 9 60 

13.33 28.33 33.33 10.00 15.00 100.00 
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Table 2j. Computed monthly transitional matrix, S-0 

SEPT OCTOBER 

FREQUENCY 
PERCENT 
ROW PCT 
COL PCT DDRY 1 DRY 1 NORMAL 1 WET 1 VKWET 1 TOTAL 

DORY 2 1 3 i 2 1 0 1 1 1 8 

3.33 1  5.00 1  3.33 1  0.00 1  1.67 i 13.33 

25.00 1 37.50 1 25.00 i  0.00 j  12.50 1 
25.00 j 14.29 1 15.38 i 0.00 1 10.00 1  

DRY 5 1  4 1  2 i 5 { 1 1  1 7 
8.33 1  6.67 i  3.33 ] 8.33 1 1.67 1 28.33 
29.41 1  23.53 1  I 1.76 j 29.41 1 5.88 j 

62.50 1 19.05 ] 15. 38 1 62.50 j 10.00 1 

NORMAL 0 1 7 1 7 i  3  i  3 1 20 
0.00 1 11.67 I 11 .67 J 5.00 j 5.00 ! 33.33 
0. 00 1  35.00 1  35. 00 1 15.00 I 15.00 ! 
0. 00 1 33.33 1  53.85 1  37.50 1  30.00 ! 

WET 1 1  3 ] 0 I  0  I  2 1 6 

I .67 1 5.00 1 0.00 1 0.00 1 3.33 1  10.00 
16.67 1  50.00 1  0.00 1  0.00 1  33.33 1 

12.50 1 14.29 1 0. 00 1  0.00 1  20.00 j  

WWET 0 1  4 1  2 1 0 1  3 1 9 
0.00 1 6.67 i 3.33 1  0.00 1  5.00 1 15.00 
0.00 1 44.44 1 22.22 1  0.00 1  33.33 1 
0.00 j 19.05 J  15.38 j  0.00 1  30.00 I  

TOTAL 8 21 13 8 10 60 
13.33 35.00 21 .67 13.33 16.67 100.00 
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Table 2k. Computed monthly transitional matrix, 0-N 

OCTOBER NOVEMBER 

FREQUENCY| 
PERCENT 1 
ROW ACT 1 

1 
+ 

COL PCT 1 DDRY 1 DRY 1 NORMAL 1 WET 1 WWET 1 
+ 

TOTAL 

OORY 1 0 1 4 1 3 I 0 1 1 1 8 

0.00 1 6.67 i 5.00 i 0.00 1 1-67 1 13.33 

0. 00 j 50.00 J 37.50 ) 0.00 1 12.50 1 
0.00 1 17.39 1 27.27 1 0.00 1 7.69 1 

DRY 1 3 i 11 i 4 1 0 i 3 1 21 

5. 00 I 18.33 i 6.67 j 0.00 1 S.OO 1 35.00 

14. 29 1 52.38 1 19.05 ! 0.00 j 14.29 1 
42.86 1 47.83 1 36.36 1 0.00 1 23.08 1 

NORMAL 1 2 1 4 1 2 1 3 i 2 1 13 

3.33 1 6.67 1 3.33 i 5.00 1 3.33 1 21 .67 

I 5.38 1 30.77 i 15.38 i 23.06 1 15.38 1 
28.57 1 17.39 1 18.18 1 50.00 i 15.38 

WET 1 1 1 3 i 2 1 0 1 2 1 8 
1.67 1  5.00 1 3.33 1 0.00 j 3.33 1 13.33 

12.50 1 37.50 1 25.00 1 0.00 j 25.0 0 1 
14.29 1 13.04 1 18.18 i 0.00 ! 15.38 1 

«WET I 1 t 1 1 0 i 3 1 5 1 10 

1.67 1  I  .67 i  0.00 i 5.00 1 8 o 33 1  16.67 

10.00 I  10.00 1  0.00 i 30.00 1 50.00 i  
14.29 1 4.35 j 0.00 I  50.00 1 38.46 1  

4-

TOTAL 7 23 11 6  13 60 

1 I .67 38.33 18.33 10. 00 21.67 100.00 
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Table 21. Computed monthly transitional matrix, N-D 

NOVEMBER DECEMBER 

FREQUENCY 
PERCENT 
ROW PCT 
COL PCT DORY 1 DRY 1  NORMAL I  WET 1 WWET I  TOTAL 

DORY 1  1 4 i  2 1  0 1  0 1  7 

1.67 1 6.67 1  3.33 i  0.00 1  0.00 1  11 . 67 

14.29 1 57.14 1 28.57 1  0.00 1  0.00 1  
12.50 j 19.05 1 20.00 j  0.00 i  0.00 1  

DRY 2 1 5 1  3 1 7 1  6 1  23 

3.33 1 8.33 1 5.00 1  11.67 1  10.00 1  38.33 

8.70 i  21.74 1  13.04 1 30.43 1 26.09 1  
25.00 1 23.81 ! 30.00 1  63.64 ] 60.00 I  

NORMAL 2  1 4 1 2 1  1 1  2 ! 1 1 

3. 33 1 6.67 1 3.33 1 1.67 1  3.33 ! 18.33 

18.18 1  36.36 1  18.18 i  9.09 1  18.18 1  
2 5.00 1 19.05 1  20.00 1 9.09 1  20.00 1  

WET 0 i 2 1 2 1  1 1  1 1  6 

0. 00 i 3.33 t 3.33 1 1.67 1  1.67 1  O
 

O
 

O
 

0.00 1 33 . 33 1  33.33 i 16.67 1 16.67 1  
0. 00 I  9.52 1  20.00 i 9.09 1  10.00 1  

WWET 3 1  6 1  1 1  2 1  1 1  1 3 

5.00 1 10.00 j 1.67 i 3.33 i 1 .67 ! 21.67 
23.08 j 46-15 1 7.69 J  15.38 j 7.69 I  
37.50 1  28.57 i 10.00 1 18.18 1 10.00 1 

TOTAL 8 21 10 1 1 10 60 

13.33 35.00 16.67 18.33 16.67 100.00 
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Table 2in. Annual transitional matrix 

LAGANNUA ANNUAL 

FREQUENCY 
PERCENT 
ROW PCT 
COL PCT DORY i DRY I NORMAL I  WET 1 WWET TOTAL 

+ 

DORY 1 1 1 1 ] 0 1 4 I 3 1 9 

1 1.69 1 1.69 1  0.00 1 6.78 1 5.08 1 15.25 

I 11.11 i 11.11 j 0.00 j 44.44 i 33.33 1  
1 11.11 1 8.33 1 0.00 i 40. 00 1  30.00 1  

+ 

DRY i 1 1 3 i 6 1 1 1 1 1 12 

i  1.69 1  5.08 1 10.17 1 1 .69 j 1.69 1 20.34 

1 8-33 1 25.00 1 50.00 j 8.33 1 8.33 1 

1 11.11 i 25.00 1  33.33 1  10. 00 J 10.00 1 
+ 

NORMAL ] 2 1 4 1 7 J  1 1  3 1 17 

I 3.39 1  6.78 i 11.86 1 I .69 1 5.08 1 28.81 

1  11.76 ! 23.53 i 41.18 1  5.88 i 17.65 1  
i  22.22 { 33.33 J  38.39 I  10.00 1 30.00 1  

WET i  2 1  2 1 3 1 2 i  2 1  11 

i 3.39 1 3.39 1 5.08 j 3.39 1 3.39 1  13.64 

j  18.18 j  18.18 1  27.27 1 18.18 I  18.18 ! 
1  22.22 i  16.67 1 16.67 1 20.00 1 20.00 I  

WWET 1  3 1  2 1  2 1  2 1  1 1  1 0 

1 5.08 i 3.39 ! 3.39 1 3.39 i 1.69 1  16.95 

1 30.00 1 20.00 i  20.00 1 20.00 i  10.00 1  
1 33.33 1 16.67 J  11.11 1  20.00 1 10.00 1  

+  

TOTAL 9 12 18 10 10 59 

15.25 20.34 30.51 16.95 16.95 100.00 
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additional tables for the other seven stations under study, it was de­

cided to list only the annual transitional matrices in the Appendix. 

Therefore, Appendix B represents the computer algorithm for these 

computations and the annual transitional matrices for these remaining 

stations (Tables B-1 through B-7). To obtain an overall transi­

tional matrix for the region under study, the weighted means (weighted 

by length of record) of the transitional probabilities were calculated 

on the basis of annual transitional probabilities. Table 3 gives this 

mean annual transitional matrix for the region under study. A stochastic 

Markov chain process was applied to this matrix in order to achieve the 

probabilities of dryness and wetness. In terms of stochastic processes, 

the steady-state probabilities of the transitional matrix represent 

the dryness and wetness cycle. (See Review of Literature.) The summary 

of the calculations is as follows; 

0. 057 0.101 0. 139 0. 211 0.180 

0. 168 0.278 0. 197 0. 209 0.311 

0. 308 0.289 0. 241 0. 234 0.198 

0. 323 0.182 0. 262 0. 221 0.188 

0. 144 0.150 . 0. 161 0. 126 0.109 

(47) 

and for the steady-state condition: 
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Table 3. Mean annual transitional matrix for the region under study^ 

DD D N W WW 

DD 0.0573 0.1681 0.3082 0.3226 0.1438 

D 0.1010 0.2782 0.2891 0.1817 0.1500 

N 0.1388 0.1969 0.2406 0.2624 0.1614 

W 0.2107 0.2090 0.2338 0.2208 0.1257 

WW 0.1803 0.3111 0.1979 0.1881 0.1085 

^1) Weighted mean transitional matrix for area under study consists 
of eight stations as follows: 

Station No. of records 

1) Rock Rapids 75 

2) Sheldon 54 

3) Spencer 60 

4) LeMars 83 

5) Sioux City 79 

6) Storm Lake 79 

7) Alton 74 

8) Onawa 80 

584 

2) The overall rainfall mean and standard deviation for the 
region under study are 27.12 in, and 6.1 in., respectively. 
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or 

= 0.057q^ + O.lOlq^ + OUlSSq^ + 0.211q^ + O.lBq^ 

qg = 0.168q^ + O.ZYSqg + O.lSTqg + 0.209q^ + O.Sllq^ 

q_ = 0.308q^ + O.Zggq. + O.l^lq^ + 0.234q^ + 0.198q^ (48) 

q^ = 0.323q^ + 0.182q2 + 0.262^2 + 0.221q^ + 0.188q^ 

q^ = 0.144q^ + O.lSOqg + O.lSlq^ + 0,126q^ + 0.109q^ 

To this set of equations, another equation must be added to complete 

the probabilistic conditions. The additional equation is in the form 

of: 

QI + Q2 + ^3 + ^4 + ^5 = 1 (49) 

so there are six equations with five unknowns. Therefore, one equation 

is redundant and can be dropped from the system. According to the 

Markov chain procedure, the redundant equation can be any of the first 

five equations, but the last equation added must be considered es­

sential. The solution of these simultaneous equations provides the 

needed steady-state probabilities as follows: 

q^ = the probability of "dry-dry" occurrence = 0.141 

q = " " " "dry" " = 0.231 

q^ = " " " "normal" " = 0.254 

q^ = " " " "wet" " = 0.232 

q^ = " " " "wet-wet" " = 0.142 

Sum 1.000 
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Using the relationship between the steady-state probabilities and the 

recurrence time (see Review of Literature), the recurrence times are 

obtained as follows: 

= the probability for "dry-dry" occurrence = 7.092 years 

M.2 = " " " "dry" " = 4.336 " 

1^3 = " " " "normal" " = 3.941 " (50) 

= " " " "wet" " = 4.309 

= " " " "wet-wet" " = 7.016 " 

These durations show the average long-term recurrence on a probability 

basis, but do not indicate the exact sequence with which they will occur 

in the future. If the current once in 20- to 22-year severe drought cycle 

in Iowa is considered relevant, then the above data can be expanded to 

illustrate one uniform cyclical pattern. Conversion into this pattern 

is shown in Figure 3. 

The calculation and the achieved results show that the stochastic 

Markov process worked successfully for determining cyclical precipita­

tion events in this region and the higher probability events have the 

greatest likelihood of occurring in the future. In the meantime, one 

should realize that the cycle presented is based on the assumptions made. 

Therefore, the sequence of events during a drought period may remain 

random. To guide future investigations, it is recommended that the 

boundary limits for such a period be explored in more detail. For example, 

one needs to redefine the limits for extreme dryness or wetnesses, with regard to 
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Figure 3, Dryness and wetness cycle for the region under study 
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the available data, i.e., one should investigate what depth of precipita­

tion represents the extreme dryness or wetness. For "dry-dry" years, 

in this study a range of variations below the X - 2S might work for 

extreme dryness, and similarly, the values above the X + 1.5S or 

X + 2S might represent the extreme wetnesses. Whatever arrangement 

is applied, the resultant cycle would differ from that obtained for 

those assumptions used in this study. The general procedure shows 

that the period of recurrence interval becomes larger when more limits 

are considered. For Iowa, a cycle having these extreme values might 

have a recurrence interval of between 20 to 22 years compared to the 

4 to 7 year average obtained for this general wetness or dryness study. 

The cycle obtained and the related probabilities will be used for 

evaluating groundwater probabilistic fluctuations later in this 

study. It should be added that these analyses took place on the basis 

of calendar year data (Jan. through Dec.). Since there is a shift 

of three months between calendar and water years, the results are not 

strictly applicable for a water year cycle. However, the shift of 

months should not materially change the cycle results in long period 

studies. 

Rainfall-Runoff Relationship 

There are many ways and methods to relate rainfall and runoff. 

Despite the availability of relatively good methods such as the unit 

hydrograph method, coaxial diagrams, curve number approach, and others, 

there is still no simple method devised to define this relationship 
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exactly. So far, mathematical models that consider more dominant factors, 

and are more costly, offer a better way for such a study. The term 

"mathematical model" used here is referred to as a more complex model 

than a simple rainfall-runoff relationship. As the next chapter 

describes, a mathematical model of the hydrologie cycle, called a hydro-

model, is developed to describe the rainfall-runoff cause and effect 

relationship as well as other hydrological responses in the region 

under study. This model is used to evaluate the groundwater oc­

currences. However, an evaluation of the rainfall-runoff relationship 

for the study region is needed as one of the several processes in­

cluded in the model development. To provide a necessary process for a 

mass water balance in the area, an approximate rainfall-runoff rela­

tionship is needed. Two well-known and reputable approaches were 

examined to define this relationship in the area under study: 

1. the curve number approach developed by the Soil Conservation 

Service of the U.S. Dept. of Agriculture (112a, 112c), and 

2. a multiple regression approach for rainfall-runoff rela­

tionship. 

The following sections discuss these approaches. 

Curve number approach 

As described in groundwater movement previously, the infiltra­

tion process is a very complex phenomenon. Since the ground surface 

divides the receiving rainfall into two parts (infiltration or direct 

surface runoff), it would be easy to estimate the runoff if the in­

filtration process could be easily modeled. As a matter of fact. 



www.manaraa.com

73 

this process (although well understood) is too complex with many 

variables. Consequently, there always exist problems to estimate 

or predict the exact amount of runoff occurring after a rainfall. 

There are some sophisticated methods to evaluate the components of the 

rainfall-runoff relationship in hydrology science, namely the 0 index 

method or infiltration indices method. Another well-known method 

introduced by the U.S. Soil Conservation Service (U.S. SCS) gives an 

estimation of rainfall excess by considering the composite soil cover 

complex (113). The CN (curve number) approach originated from the fact 

that a plot of natural precipitation and its resultant rainfall excess 

for a large stonn and over a small area shows some type of linear re­

lationship. This plot is shown in Figure 4. A lag of rainfall neces­

sary to start the runoff is introduced and represents the volume of 

rainfall needed for the initial abstractions (interception and depres­

sion storage). Based on this concept, the U.S. SCS has empirically 

o C_) 45' 

ACC. RAINFALL EXCESS 

Figure 4. Accumulated rainfall vs accumulated runoff 
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developed a method by which the estimation of runoff (rainfall excess) 

from an occurred rainfall is possible. The method, which is called the 

CN approach, has many applications in hydrological engineering works. 

A brief description of the method follows; however, for more detailed 

information, one can refer to appropriate documents, some of which 

are given in the list of references in this paper^(24, 112a, 115, etc.). 

According to SCS, the general equation for the precipitation-rainfall 

excess relationship is as follows: 

Q = (P - Ia)^/[(P - la) + (S- + la)] (51) 

where: Q = excess rainfall or runoff in inches, 

P = precipitation in inches, 

la = initial abstractions in inches, and 

S' = potential maximum retention which is greater than or 

equal to actual retention (F) in inches. 

The initial abstraction includes all losses occurring before the run­

off reaches the stream. These losses are mainly interception, infiltra­

tion and surface storage. On the basis of experimental watershed 

evaluations, the SCS also found the following relationships. 

F < S 

S = S' + la 
(52) 

Q < (P - la) 

la = 0.2S 

Finally, the SCS developed the following equation which describes the 
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precipitation-rainfall excess relationship, and it is used for estimating 

the direct runoff from a storm rainfall. 

Q = (") 

The parameter "S" is still unknown and should be evaluated on the basis 

of the soil-cover complex. The SCS also attempted to relate the "S" 

parameter to the soil type and its cover. The following equation 

met this purpose 

™ (54) 

Therefore, instead of using "S," SCS advises the use of the parameter 

CN (curve number) which must be found from soil grouping information. 

The SCS has classified the soils with regard to the soil practices and 

hydrological conditions. A CN is associated with each combination of 

land use, soil practice, hydrological condition and hydrological soil 

group. This classification gives a large number of alternatives. 

Having determined the appropriate CN for the area under consideration, 

one might use a set of curves to estimate direct runoff from a 

particular rainfall storm. Figure 5 shows this set of curves estab­

lished by SCS. Appendix C represents the necessary tables for soil 

classification worked out by the SCS. 

Research conducted based on SCS idea 

According to SCS, the CN used to estimate direct runoff from storm 

rainfall depends on the soil moisture conditions. The general classifica­

tion for antecedent soil moisture (AMC) is referred to as the antecedent 
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Figure 5. Chart fcor estimating direct runoff [from U.S. Soil Conserva­

tion Service (112a)] 
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soil moisture condition and is defined for day j as follows: 

5 
0 < E P. < 1.5" Condition I (55) 

i=l ^ 

where i is the number of prior days. In this condition the soil is 

dry but not to the wilting point so that cultivation is possible, 

5 
1.5" < Z P. . < 3" Condition II (56) 

~ i=l " 

This condition represents the case for annual floods. It is also 

an average of conditions which precedes the occurrence of maximum 

annual flood on numerous watersheds. 

5 
P. > 3" Condition III (57) 

i=l ^ 

This condition includes the occurrence of heavy rainfall or continuous 

light rainfall accompanied by low temperatures during the five days pre­

ceding this storm. The soil can be considered almost saturated. 

In the case of monthly analysis, which is the object of this 

study, a modification of these conditions is made. 

An examination of monthly rainfall records revealed that the 

rainfall of certain months may not meet these limits established for 

daily rainfall. Also, the rainfall of some months exceeds these limits, 

whereas in some other months the depth of rainfall falls below these 

limits. Since the study considers the monthly variation of soil 

moisture as an average, it does not consider the rainfall distribution 

throughout the month. It may not be correct to assign Conditions II 

or III for low rainfall months or Condition III always for high rain­

fall months. That is, it may happen that in a low rainfall month the 
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time distribution of rainfall may meet the criterion of Condition II 

or III,or conversely for high rainfall months, the criterion for 

Condition II might be met. Although the examination of daily rainfall 

data shows this, the philosophy of this study is based upon monthly data 

and upon seeking an empirical method for this analysis. Therefore, the 

following assumptions are made to start the investigation. 

The following list, based on SCS soil condition limits, shows the 

new defined limits for the month of January. 

Monthly Condition I: below 0.45" received rainfall 

Monthly Condition II: between 0.45" and 0.89" received rainfall 

Monthly Condition III: over 0.89" received rainfall 

X = 0.67" for this month. 

Similar calculations were performed for other months. Table 4 

represents calculated limits and adjusted monthly soil conditions for 

months January through December for the Spencer station. A possible 

maximum monthly rainfall was also assumed for each month (based on 

available data but visually estimated) to truncate the established curves 

properly. The last column of Table 4 represents these maximum values. 

The Spencer station was chosen to represent an average location for 

the region under study. To offer a wide range of possibilities, a 

set of curves, describing the relation between CN's and ^ (prior 

month's precipitation), was established as a practical and useful 

procedure. This set of curves includes CN values of Condition II 

(based on SCS classification) from 100 to 50 which appears to be 

covering enough of the range of variations for the area. The equations 
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Table 4. Calculated limits and monthly soil conditions for Spencer 
station 

Monthly AMC values 
I II III 

Variable/ 
month 

Monthly 
average 
rainfall 

•Min. 
rainfall 
(in.) 

Mid 
rainfall 
(in.) 

Max. 
rainfall 
(in. ) 

Probable max. 
rain 

Jan. 0.67 0.45 0.89 > 0.89 3" 

Feb. 0.91 0.61 1.21 > 1.21 4" 

Mar. 1.58 1.05 2.11 > 2.11 4.5" 

Apr. 2.52 1.68 3.36 > 3.36 7.5" 

May 3.67 2.45 4.89 > 4.89 12" 

June 4.29 2.86 5.72 > 5.72 12" 

July 3.36 2.24 4.48 > 4.48 12" 

Aug. 3.64 2.43 4.85 > 4.85 12" 

Sept. 3.34 2.23 4.45 > 4.45 12" 

Oct. 1.72 1.15 2.29 > 2.29 6" 

Nov. 1.30 0.87 1.73 > 1.73 4.5" 

Dec. 0.81 0.53 1.08 > 1.08 3" 

Annual 27.70 18.47 36.93 > 36.93 

and their relevant curves represent the relation between equivalent CN's 

for three conditions (Condition I, II and III) from one side and the 

AMC from the other side. The derived equations were numbered from 1 to 11 

(covering CN's of 100 to 50 for Condition II, and its equivalent for Condi­

tions I and III). Table 5 shows the relation between the numbered 

curves and their equivalent CN's for three conditions. 
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Table 5. Relation between numbered derived curves and the soil condi­
tions (113) 

No. of 
numbered 
curves 

Condition 
I 

Condition 
II 

Condition 
III 

1 100 100 100 

2 87 95 98 

3 78 90 96 

4 70 85 94 

5 63 80 91 

6 57 75 88 

7 51 70 85 

8 45 65 82  

9 40 60 78 

10 35 55 74 

11 31 50 70 

When the new monthly soil conditions were defined (Table 4), a 

linear relationship of CN = a^P^ ^ + a^ assumed to establish a set of 

curves for each month. These curves are supposed to describe the 

relation between the monthly antecedent soil moisture (prior month's 

precipitation) and its related CN's, With the given values of 

CN and ^, the above-mentioned linear relationship was solved for 

a range of CN's and the related P _'s to find the coefficients of 
t— 1 

a^ and a^. Therefore, to derive each equation of the set (the set 

starts at No. 1 and ends at No. 11 as Table 5 shows) for each month. 
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the CN values given in Table 5 along with their relevant ^ (Table 4) 

for that particular month have been used. Having established each 

equation, one may find the specified monthly CN with regard to the 

observed Consequently, the SCS rainfall-runoff curves of Figure 5 

can be used for monthly runoff predictions. That is, when the CN and 

the rainfall for the current month are given, the excess rainfall is 

obtainable. In summary, the developed procedure is supposed to be 

used for appropriate monthly CN determination. 

Table 6 shows the derived equations for the month of January and 

Figure 6 shows the related graphs. The same procedure was used to 

derive equations and graphs for the other remaining 11 months for 

this station. Since they are similar to those of the month January, 

they were not included in this report, but those belonging to the 

month of June are given in Figure 7 to represent an extreme month. 

Using all tables or graphs is neither convenient nor practical 

for further studies. Therefore, a summarizing procedure attempted to 

select the best combination of the equations or the graphs. According 

to U.S.G.S. records, the sum of 12 months of SRO is less than 2.5 in. 

in the region under study. Not all equations in the set are responsive 

to produce this much of the annual SRO. For example, if numbered 

curves of 4 are used for all 12 months of the year, the total annual 

depth of SRO sums to 11.05 in. (see Table 7), which is too high. The 

reason evidently is that the selected CN's are high. By the same token, 

numbered curves of 11 will produce probably a very low annual depth 

of SRO which does not comply with field data. After examining 

the responses of the graphs and analyzing the outcomes of these 
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Table 6. CN equations for the month of January for the Spencer station^ 

No. a^ a^ Equations 

1 100 0.00 CN^ = 100 

2 88.13 5.5 CN- = 5.5P^ , + 83.13 
L L- i 

3 79.30 9.19 CN. = 9.19P^ , + 71.30 
J t-1 

4 71.24 12.43 CN, = 12.43P^ , + 71.24 
4 t-1 

5 64.19 14.59 CN. = 14.59P^ , + 64.19 
J t- i 

6 57.91 16.29 CN. = 16.29P, , + 57.91 
0 t-1 

7 51.63 18.00 CN_ = 18P, T + 51.63 
/ t- i 

8 45.35 19.70 CN- = 19.70P^ - + 45.35 
O L- 1 

9 40.09 20.33 CN. = 20.33P^ - -h 40.09 
y t-i 

10 34.83 20.95 CN.. = 20.95?^ - -h 34.83 
iU L- i 

11 30.33 21.13 CN,, = 21.13P^ - + 30.33 
11 t-1 

^The calculated values and assumed maximum rainfall are as 
follows : 

P , 0.225" 0.670" 1.945" 
t- i 

Soil condition I II III 

Maximum rainfall assumed = 3"/mo. January. 
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monthly antecedent soil moisture, top to bottom 
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Figure 7. Numbered curves 1-11 showing relation between SCS CN's and 

monthly antecedent soil moisture, top to bottom 
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combinations, a single set of graphs was established so that the over­

all estimate would be coincident with that occurring in the area. 

Table 7 shows the selected combinations and Figure 8 represents the 

related set of graphs. This set of graphs or equivalent equations 

were used in the hydromodel to describe the surface runoff in the 

area. The CN approach was used to fulfill the surface runoff require­

ments in the hydromodel as a practical tool. Several other combina­

tions of the monthly equations were considered for increasing or 

decreasing the S's and SRO's (see Table 7), but the hydromodel was 

too sensitive to utilize this approach. Therefore, the CN approach 

was dropped. The next section gives the reasons for this decision. 

A regression analysis approach was then initiated to obtain an equation 

needed for SRO determination in the hydromodel. The following sections 

describe this approach. 

Regression analysis approach 

Multiple regression analysis is a widely used statistical method 

for hydrologie studies. For this particular study, five regression 

models are evaluated. The models are as described below. 

Model 1 — Relationship between the direct monthly runoff 

t 

Model 2 — Relationship between the direct monthly runoff, the 

monthly rainfall and the immediate previous monthly rainfall 

in the form of: 

(Q) and the monthly rainfall in the form of: 

Q = aP ,b (58) 

(59) 
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Table 7. Calculated 'S' and 'SRO' using the developed 'CN* curves 

Ave. Ave. Numbered curve Numbered curve Numbered curve Numbered curve 

Pt-1 4 6 A 9 
Month in. in. CN S. SRO. CN S. SRO. CN S. SRO. CN S. SRO, 

in. in in. in. in. in. in. in. 

Dec. 0.81 

Jan. 0.67 0.81 81.3 2.30 0 71.1 4.06 0 61.3 6.31 0 56.6 7.68 0 

Feb. 0.91 0.67 77.6 2.88 0.05 66.4 5.05 0 55 8.15 0 50 9.95 0 

Mar. 1.58 0.91 75.4 3.26 0.20 63.5 5.75 0.01 52.2 9.15 0 47.2 11.18 0 

Apr. 2.52 1.58 76.3 3.11 0.7 64.6 5.49 0.30 53.5 8.71 0.05 48.5 10.65 0 

May 3.57 2.52 77 3.00 1.6 65.5 5.27 0.80 54.5 8.34 0.35 49.6 10.17 0.2 

June 4.29 3.57 79 2.66 2.1 68.1 4.86 1.50 57.7 7.33 0.85 52.9 8.90 0.6 

July 3.36 4.29 83.1 2.03 1.7 73.5 3.60 1.15 64.3 5.56 0.60 59.6 6.78 0.4 

Aug. 3.64 3.36 79.7 2.55 1.7 67 4.5 1.00 58.8 7.01 0.55 54 8.54 0.35 

Sept. 3.34 3.64 81.2 2.32 1.6 71 4.10 0.90 61.1 6.37 0.50 56.3 7.75 0.35 

Oct. 1.72 3.34 90.4 1.06 0.95 83 2.04 0.50 75.7 3.21 0.30 71.4 4.00 0.20 

Nov. 1.30 1.72 83.8 1.93 0.30 74.4 3.44 0.10 63.3 5.31 0 66 5.15 0 

Dec. 0.81 1.30 86.3 1.59 0.15 77.5 2.90 0.05 69.1 4.47 0 59.3 6.86 0 

11.05 6.31 3.20 2.10 
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Model 3 — Relation between the direct monthly runoff, the monthly 

rainfall, immediate previous monthly rainfall and the maximum 

daily rainfall as a 24-hour average intensity (I^) which 

occurred during the current month under consideration in 

the form of: 

Q . (60) 

Model 4 — Relation between direct monthly runoff, monthly rain­

fall, immediate previous monthly rainfall, maximum daily 

intensity and the average temperature of the current month 

under consideration (T^) in the form of: 

Q = apV iV (61) 
t t-i t t 

Model 5 — Relationship between monthly direct runoff, the monthly 

rainfall and the sum of the 12-month antecedent precipita­

tion in the form of: 

, 1 2  
Q = aP\ Z i) (62) 

" i=l 

To find the regression coefficients for the above equations, the 

SAS algorithm was used with a minor subroutine to convert the computa­

tions into the logarithmic form. Tables 8 and 9 show the equations 

2 obtained and the coefficient of determination, R , computed for each 

of the five models above. Model 5 was selected for incorporation into 

the hydromodel. 

Since another procedure was used for snow months (December through 

March), as the next chapter dealing with the hydromodel describes, the 
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fifth model was developed only for the eight months of April through 

November. As Table 9 shows, the results are satisfactory and the 

2 
computed R are relatively high for Model 5. It should be explained 

also that total streamflow, including surface water and groundwater 

contributions, was used in this regression analysis. Because of the 

low average annual precipitation in this area of Iowa, and the high 

évapotranspiration rates, there is little groundwater contribution. 

Therefore, as a first estimate, the regression equations are acceptable. 

Refinements can be introduced in the verification phase. 
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Table 8. 
2 

Regression equations and 'R ' for 
months in the area under study 

a month and a combination of 

Model 1 

Month Q = aP^ R2 

Dec. Q = 0.017P°'294 0.015 

Jan. Q = O.OllpJ*^^^ 0.051 

Feb. Q = 0.02ipj*°°^ 0.167 

Mar. Q = 0.157Pj*^^ 0.203 

Apr. Q = 0.133P°'^^^ 0.021 

Total Q = 0.133P°''^^^ 0.306 
5 mo. 

May Q = 0.099P°'^^ 0.011 

June 
2 52 

Q = 0.066P^'^^ 0.337 

July Q = 0.062P°"^^^ 0.021 

Aug. Q = O.OOÔPJ'^'^ 0.514 

Sept. Q = 0.012P°"^® 0.165 

Oct. Q = 0.024P°'^^ 0.189 

Nov. Q = 0.033P°"'^^^ 0.150 

Total Q = 0.032?°'^^ 0.169 
7 mo. 

Model 2 

Month r2 

Dec. Q = 0.030P°'49p°2i^ 0.363 

Jan. Q = 0.012P°'44pO'2G 
t t-1 

0.062 

Feb, Q = o.oi7pJ;'°S"°:^^ 
t t-1 

0.171 
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Table 8. Continued 

Model 2 

Month <5 = "R^ 

Mar. Q = 0.226P^",0.49 
t t -1 

0.273 

Apr. Q = 0.09ip°'^2p}"i^ 
t t-i 

0.283 

Total 
5 mo. 

Q = 0.058P^'22p0'56 
t t-i 

0.356 

May- Q = 0.069P°*^^P!:*}^ 
t t-1 

0.425 

June Q = 0.004PJ*^P°*J^ 
t t-1 

0.340 

July Q = 0.012P°'42pl"18 
t t-i 

0.124 

Aug. Q = 0.006P^*^^P~°*°^ 
t t-1 

0.515 

Sept. Q = 0.003P°"*^P}'T 
t t-i 

0.489 

Oct. Q = O.OlpJ'SJ'?^ t t-i 
0.423 

Nov. Q = 0.028°"45p0'59 
t t-i 

0.313 

Total 
7 mo. 

Q = 0.024p0'G4p0'37 
t t-1 

0.202 

Model 3 

Month R2 

Dec. Q = 0.036p0'17p°'9i0'395 
t t-i t 0.369 

Jan. Q = 0.017p0.201p0'32l0'29 
t t-1 t 

0.065 

Feb. Q = 0.026P°'^GpI°:19iO'57 
t t-i t 0.181 

Mar. Q = 0 I3pl.25 0.57 -0.84 
t t-1 ^t 

0.317 

Apr. Q = 0.24p"0'2Gpl'39il'l 
t t-i t 

0.311 

Total 
5 mo. 

Q = 0.84P°-*9?g:57l°-42 0,361 
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Table 8. Continued 

Model 3 

Month Q = aft^t-llt 

May Q = 0.069p0'31p0'!*l0'90 
t t-1 t 

0.511 

June Q = o.oiop?;"^^p°"pi°'^^ 
L t- i t 

0.399 

July Q = 
t t- i t 

0.179 

Aug. Q = 0.012pl'°4p-0'13iO'G3 
t t-1 t 

0.551 

Sept. Q = 0.0019P^*^^P^'^^l"°'^ 
t t-1 t 

0.511 

Oct. Q = o.oo54pJ;'^^pJ;'^^i"°'^^ 
t t-i t 0.442 

Nov. Q = 0.058P:°'3Sp°.68i0.95 
t t-1 t 

0.368 

Total 
7 mo. 

Q = 0.0414P°-°77P°'3SI°'7°2 
L t- i L 

0.244 

Model 4 

Month Q = aftft-lItTt 

Dec. Q = 0.0005P° ' 4^P° • • 26?! • '^2 
t t-i t t 

0.400 

Jan. Q = 0.0004P°*^^P°*T4°*^^T^*^^ 
t t-i t t 

0.160 

Feb. Q = 0.0139P°'^9p"°:^^I°'^^T°'^2 
t L-i t t 0.182 

Mar. Q = 28.87P^* 0.356 

Apr. Q = 2.39 * 0.392 

Total 
5 mo. 

Q = 0.0008pO'*?pO'f7*lO'274Tl.386 
t t-1 t t 

0.426 

May Q = 0.0014P°• 
t t-i t t 0.512 

June Q = 0.3205P^•7Gp°" 
t t-1 t t 0.400 

July Q = 0.0012P°• 
t t-1 t t 0.179 

Aug. Q = 3 73 * j^Q"15pl.l7p-0.05^0.57^6.72 J./J LU ^t-l t t 0.564 
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Table 8. Continued 

Model 4 

Month R2 

Sept. Q = 1.21 * ]^Ql3pl.l8pO.99^-0.53^-8.8 
t t-1 t t 

0.559 

Oct. Q = 2.08P^'^P^'^^I~°*^^T"^*^^ 
t t-1 t t 

0.446 

Nov. Q = 3.3 * 0.477 

Total 
7 mo. 

0.247 

Table 9. Regression analysis for monthly rainfall and its 
antecedent precipitation (Model 5) 

12-month 

Month 
(nonsnow Coefficients 
months) a be R2 

April (e)"21'3 5.99 0.452 0.647 

May 2.96 1.24 0.495 

June (e)-17.13 3.54 2.94 0.444 

July (e)-14.07 3.47 0.335 0.384 

Aug. 3.57 1.45 0.655 

Sept. (e^-19.18 4.51 1.06 0.583 

Oct. (e)-24.64 6.44 0.587 0.631 

Nov. ^e)-19.76 5.012 0.159 0.568 
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CHAPTER IV. MATHEMATICAL MODEL USED FOR THIS STUDY 

General View 

The following two sections give a scope of scientific hydrology 

and indicate the proliferation of mathematical models. The brief 

description about hydrologie and mathematical models which follows this 

discussion is just a reminder for readers to focus later on the 

procedures pursued in this study. It is believed that this informa­

tion is too brief to give all the essential tools for recognizing what 

is going on in hydrologie and mathematical models today, and what ways 

and means are available for evaluating and verifying the models. To 

get a more comprehensive idea of this subject, it is recommended that 

the reader study the literature review, together with this brief dis­

cussion concerning the purpose and results of this study. 

Brief definition of hydrology 

Hydrology is a science that measures the circulation of water 

through atmosphere, surface and underground of the earth. Hydrology 

consists of two words, "hydro" and "logy." The first means water and 

the second is similar to the study of a phenomenon. This word (hydrology) 

is analogous to sociology, pathology, geology, etc. The science of 

hydrology describes and measures the movement of water from the earth 

and to the earth. For example, water evaporates or transpires from 

the surface of the earth (from sea, river, vegetative cover and 

bare surfaces), rises to the sky, makes rain, snow and other 

precipitation (hail, drizzle, sleet, dew) and falls to the surface 

of the earth again. This precipitation runs on the surface or 
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infiltrates into the ground and flows back into the sea, from 

where it evaporates again. The science of hydrology deals with 

this type of movement of the water and the measurement of these 

phenomena. 

So, there are several methods to delineate the path of movement 

and to quantify the water balance through this path. One of the most 

powerful methods for studying the water cycle is model simulation. 

The following section describes the types of modeling in general and 

illustrates the concept of mathematical modeling in hydrological 

studies. 

Reasons for using mathematical models 

Generally, a model is an imitation of the prototype (actual system), 

and is similar to the prototype in every respect except that the size 

usually is smaller. This definition applies to the physical models. To 

calculate results, mostly the costs and benefits of a project, experts 

operate the model rather than the prototype itself. The project is 

said to be justified, if the model test yields the desired results. 

The most recent idea is to construct a model on the basis of 

mathematical formulation. That is, instead of constructing a physical 

model similar to that of the prototype (sometimes as large as the proto­

type itself), experts develop a mathematical model so that it can answer the 

desired questions. This is called a mathematical or simulation model 

and has many applications in engineering works. 

The main advantages of a simulation model are: 1) cost preferences; 

2) ease of maintenance, 3) time-savings, and 4) adaptability. In 
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summary, George Fleming (39) gives the following reasons stated by 

Kisiel to defend mathematical models versus using a physical model: 

1. Dissatisfaction with older and perhaps empirically 
based and geographically-oriented models. 

2. Development of computers. 

3. Development of new mathematical tools for data analysis 
and model building. 

4. Availability of research funds to evaluate old methods 
and develop new methods. 

5. Gaps in data on and understanding of different kinds 
of hydrologie systems. 

6. Philosophical basis for the model, e.g., deterministic, 
stochastic or nonmathematical. 

7. Complexity of system to be modeled, e.g., too many 
parameters. 

8. Errors in forecasting or prediction. 

9. Cost of implementing the model. 

These reasons justify the use of mathematical models. The following 

discussion describes the elements and purposes of a mathematical model. 

What is a mathematical model in hydrology supposed to do? As 

discussed already (Chapters I and III), by no means should we expect 

a mathematical model to simulate precisely the real events of the 

nature in complex interactions like those occurring in hydrology. 

Rather, we may expect from this to trace the most likelihood events 

coincident to those that happened or may happen again. Therefore, 

this prediction is highly dependent on the input data fed to the model 

which are themselves dependent upon the accuracy of the measurements 

and the techniques applied to input these data in the right place. The 

more accurate the data and the better the modeling, the better response 
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from the model. The following chart (Figure 9) given by George Fleming 

(39) gives the mathematical modeling concept. 

Although the concept for mathematical models is unique, the ap­

proaches for applying this unit concept are immense. In general, two 

types of modeling are considered in hydrology to follow this concept, 

and each type has its own advantages and disadvantages. They are: 

1) lumped models which consider the overall average of the dominant 

hydrological factors in a particular point of interest in the basin, 

and 2) the distributed models which divide the whole basin in ap­

propriate parts, compute the hydrological responses of each part and 

route them to a particular point of interest. The distributed models 

are more accurate (if enough information were available) but more time-

consuming and specific. The lumped models are more empirical and 

general. The better precision from a lumped model can be expected by 

choosing a smaller hydrologie area and extending the time intervals to 

shorter periods. Indeed, some of the lumped models, like that chosen 

for this study (hydromodel), have the ability of performing the same 

actions that a distributed model does. This is the reason for adop­

tion of the hydromodel for this research study. The plan is to develop 

a unit model to represent the hydrological interactions in a smaller 

basin, and in later studies include the necessary means for applying 

the unit model for predicting in a larger basin. 

The following sections describe the properties of this model 

which is believed to be an acceptable one for this type of study. 
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Figure 9. The mathematical model concept (after G. Fleming) 
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Hydromodel 

Generally speaking, every model established to evaluate the cause 

and effect relationship of the hydrological cycle in a basin, or dealing 

with hydrodynamic balances in a system, may be called a hydromodel. 

But in this study, the name "hydromodel" was adopted from a mathematical 

model developed by A. Leon Huber as a basic computer model. According 

to Austin (3), it computes a hydrologie mass balance for the water re­

source. The literature of mathematical models in hydrology shows that 

a well-accepted model has met the verification criteria for modeling. 

Possibly one or more persons initiate the thought processes and begin to 

develop the model concepts. But the challenge for improving it continues 

until a well-behaved model is obtained, or other new ideas are introduced. 

A mathematical model in hydrology is subject to change along with progress 

in hydrological techniques and newer computer advances. This explains 

the modification of Austin's hydromodel (3) using local hydrological 

techniques and applied to a new location in Northwest Iowa, to the 

upper Floyd River basin. 

The hydromodel discussed in this report has the following main 

segments: 

A, Computer language translator alphabets and statements 

including dimensions, read and write commands to provide 

means for receiving data, compiling them and performing 

computations. This segment which is distributed throughout 

the whole program in appropriate places consists of computer 
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algorithms and follows normal computer logic (FORTRAN 

language) in order to output the monthly and annual 

interactions, 

Hydrological segments which follow the conceptual and logical 

commands to perform hydrological manipulation in order to 

find the cause and effect behavior of the catchment. These 

segments which follow both hydrological and computer logic 

consist of the following subsegments : 

1. Runoff evaluation — The model computes the fractions of 

the receiving rainfall and snow which go to surface run­

off, surface detention, infiltration, or évapotranspira­

tion or sublimation phenomena. 

2. Soil moisture and root zone supply — The model computes 

soil moisture conditions, based on the incoming and out­

going water mass balance including rainfall, snowmelt 

and évapotranspiration phenomena for both upland and 

floodplain and water demands from the floodplain areas 

of the basin. 

3. Groundwater transition and addition ~ The model computes 

the contribution of the surplus soil moisture to the ground­

water and subsequent changes in water table elevation. 

Mass balance segment performs necessary arithmetic computa­

tions in order to provide commanded outputs including monthly 

and interannual hydrobalance in the river basin. This seg­

ment follows normal computer language logic for its function 

using the computed values. It follows the hydrological pattern 
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as instructed to give the conceptually acceptable outputs. 

For this reason, all interacted sources of mass water such 

as reservoir storage, canal diversions, surface and ground­

water coming to or going from the basin, etc., will be ac­

counted for if it had been considered as a dominant factor 

in the model. Some of these factors are set to zero 

for this particular model. However, the algorithm for this 

program permits the introduction of these factors in the 

model for more detailed studies. Figure 10 shows the flow 

chart of the model. A discussion of the hydrological con­

cepts of the model follows. Appendix D presents a copy of 

the computer algorithm for this model. 

Hydrological Concepts Used in the Model 

Three main concepts for handling the hydrological cause and ef­

fect behavior of the basin are: 1) concept of surface runoff modeling, 

2) concept of snowmelt modeling, and 3) concept of groundwater modeling. 

To accomplish modeling of the hydrological cycle in the basin, some 

other hydrological principles such as soil moisture exchange, évapo­

transpiration phenomenon, beneficial water use from the basin are 

considered also. A brief discussion of these routines will follow 

the description of the main concepts. 
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Figure 10. Flow chart of hydromodel covering different hydrological processes 
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Concept of surface runoff modeling 

In the last chapter, a description was given of the rainfall-

runoff relationships. However, the curve number (CN) approach failed to 

adequately model the Floyd River Basin for the following reasons: 

1. The concept of monthly antecedent soil moisture and the 

assumptions made were not realistic, at least for the 

area under study. The time period is too great. 

2. Although the estimated annual stream discharge (SRC) values 

by this method were close to those measured values in the 

basin (see Table 7, page 87), the monthly distribution of 

the estimated SRO's could not match the similar values and 

resulted in discrepancies (+ and -) throughout the year. 

3. In contrast to the flexibility of the CN approach for esti­

mating SRO of short time intervals (daily intervals, for 

example), in the case of monthly periods, this method is not 

flexible enough. However, with regard to the overall ad­

vantages of this method, it is recommended that more research 

be conducted to increase its flexibility for the case of 

monthly evaluations. Therefore, this method is not completely 

rejected, although it failed to satisfy the needs of this 

particular model. 

4. The equations and graphs for this method (CN approach) were 

developed on the basis of assumptions which were originally 

developed based on daily soil moistures. The daily assumptions 

for antecedent soil moisture were not essentially true in 

the case of monthly evaluations, and averaging the daily 
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antecedent soil moisture throughout the month was not practical. 

5. Since the soil cover complex is subject to variation in dif­

ferent parts of the basin and the location of storm centers 

can affect the amount of runoff, it was expected that a set 

of curves (equations) as an average condition may not repre­

sent the actual field situation. Again, more investigation 

and development of local curves instead of an average condi­

tion might be helpful. 

6. The failure of this approach was the reason for developing 

another approach. Consequently, regression equations involving 

dominant factors, including a different antecedent precipitation 

index for predicting surface runoff, were used. This approach 

gave improved responses in the model, compared to those of the 

CN approach. Still, the result was not entirely satisfactory, 

for the following reasons: 

a. In most cases, a monthly method is considered to be a poor 

approach for determining rainfall-runoff relationships. 

The research did show that a better parameter for 

antecedent soil moisture should be introduced. Basing 

the condition of soil moisture on one month antecedent 

rainfall is not enough, because the monthly rainfall 

values change quite a bit through the year. 

b. Some of the computed coefficients and exponents for de­

rived equations are quite small or quite large, com­

pared to those of the general expressions for such a 
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gression. So the derived equations describe the 

statistical relationship in some degree of confidence, 

but the standard error or correlation coefficient may 

not be acceptable. 

c. The equations obtained were not well-behaved. That is, 

the range of variation for computed coefficients and 

exponents from month to month was high in both the posi­

tive and negative directions. Some attempt was made 

to smooth these coefficients and exponents in order to 

obtain a well-behaved range for them. But the response 

of the hydromodel for Models 1-4 was not satis­

factory. These corrected coefficients affected the "best 

fit" relationships obtained statistically and introduced 

additional error in the predictions. Therefore, it was 

found that this approach (regression for dominant factors 

including one-month antecedent precipitation) is not a 

good one either for this particular modeling effort. 

Finally, it was understood that the soil moisture condition due to 

rainfall of several previous months influences the runoff from the 

basin. Examining the early output of the model and utilizing the ex­

perience of the supervising professors, consideration was given of the 

sum of the 12-month antecedent rainfall. This improved the predictions. 

Therefore, the third approach was tried and led to the relatively good 

results. The equation applied for runoff estimation (model 5), as 

described in the previous chapter, is of the form: 
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, 12 
Q = apG( Z P (63) 

i=l 

where: Q is the average monthly depth of runoff on the whole basin 

in inches, 

is monthly rainfall for current month, 

12 
E P ^ is the sum of the 12-month antecedent rainfall prior 

i=l 
to the current month, and 

a, b, and c are empirical coefficients for this area. 

This type of equation was developed for the months of April, May, 

June, July, August, September, October, and November only. The remaining 

months are considered to be snow accumulation months, and a specific 

procedure was applied to them as the next section describes. 

Concept of snowmelt modeling 

No successful general analytical procedure is available to evaluate 

snowmelt and its contribution to surface runoff and soil moisture in a 

relatively large area such as the basin considered for this study. In 

the case of northwest Iowa, some research has been conducted by Dougal, 

et al. (32b) to evaluate this phenomenon. Most of the methods are 

based on practical observations to represent an empirical approach for 

evaluation. Snowmelt evaluation has been important in this research 

to accomplish the water balance in the basin. It has not been a prime 

concern that would necessitate conducting an exclusive study, but is 

of secondary importance in this modeling effort. Because of its 

influence on the water balance, much time was spent to work out 

a practical trial and error method to obtain results. The general 
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problem was how to allocate the appropriate percentage of snowfall 

and snow accumulation in each month to the phenomena of sublimation, 

surface detention to infiltration (F), snowmelt to surface runoff 

(SRO), and carryover snowpack storage. Based on consultation and hydro-

logical facts, the author tried various estimates, and after six 

trials the estimated surface runoff was close to that measured in 

the field. Although the estimated percentages resulted in the close 

estimation of runoff to those of gaged values, these percentages 

did not precisely follow the pattern of actual percentages found 

in nature. These percentages were first developed based on the 22-year 

average monthly snowfall and gaged streamflow, and would not neces­

sarily forecast actual monthly variations. To compensate for this de­

fect, a change in the sublimation and surface detention to infiltration 

relationships was made to make them dependent on the monthly snowpack 

storage measured in terms of inches of water equivalent. Figures 11 

and 12 show these hypothetical curvilinear relationships for sublimation 

and surface detention to infiltration, respectively. Since the month 

of April is a transitional type of month (completion of snowmelt) 

that has both snow and rainfall, it was treated in two ways for contribu­

tion to surface runoff. 

Concept of groundwater modeling 

The concept behind the segment of groundwater in the hydromodel 

is both analytical and empirical. The relationships worked out for 

groundwater movement in the basin are based upon the idea that the model 

should be general and responsive for the area under study. To reflect 
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60 - .45 
30 - .45 
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Figure 11. Curvilinear relationship for percent of sublimation versus the depth of snowpack 
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Figure 12. Curvilinear relationship for percent of detention versus the depth of snowpack 
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this, the concept uses the analytical principles for groundwater 

mining in surficial aquifers, and is made flexible to permit using 

more precise input data whenever such data become available. 

Figure 13 shows the sketch of an average cross section of the flood-

plain. For surficial groundwater mining, it is needed to distinguish 

between upland and floodplain characteristics. The upland groundwater 

system was assumed not to be in direct connection with the stream/ 

alluvial aquifer. The floodplain is assumed to be underlain with a 

shallow alluvial aquifer. 

Definitions in general 

/5h = change in groundwater level, monthly change as dependent 

variable, in ft 

= length of valley, ft 

W = width of alluvial valley, ft 
V 

= depth of alluvial materials in valley-permeable stratum, ft 

h = height of groundwater table above valley bottom, ft 

= height of channel bottom above valley bottom, ft 

= width of stream, ft 

Z^ = depth of water in stream, ft 

h^ = net head for groundwater movement, (h^ ^ + Ah^) - (Z^ + Z^), ft 

P = precipitation, in. 

SRO = direct surface runoff, ac-ft/mo 

F = infiltration, in. 

ET = évapotranspiration, in. 
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Figure 13. Hypothetical floodplain cross section 
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= initial abstraction from rainfall by vegetation, surfaces, 

etc., in. 

= soil moisture zone, in. 

G = monthly groundwater contribution (amount or portion of F 

passing through zone), ac-ft/mo 

D = demand, from groundwater for specific beneficial use, ac-ft/mo. 

These definitions are used for groundwater modeling. Some ad­

ditional definitions and symbols were used later in the computer modeling. 

All of these symbols, translated into characters for FORTRAN programming, 

are found at the end of Appendix D, along with the computer program. 

To compute monthly groundwater variations, a combination of 

steady-state and transient conditions for groundwater movement 

was used to lead to an overall satisfactory response of the hydro-

model. That is, for this particular model, it is assumed that 

the transient condition of the groundwater can be averaged for each 

month, and the averaged values used for steady-state conditions at the 

end of the month. Therefore, the groundwater discharged from or re­

charged into the stream obeys the one-dimensional Darcy's equation as 

follows : 

V = dL (64) 

where is the groundwater contribution to the stream (positive or 

negative), A is the cross-sectional area perpendicular to the flow, 

K is the hydraulic conductivity of the aquifer, and dh/dL is the 

slope of the water table. To evaluate the state of groundwater 

replenishment, the division of upland and floodplain in the basin 
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must be determined. Basin data showed that about 10% of the 

basin was floodplain and the remaining 90% was upland. The 

characteristics of the shallow alluvial groundwater aquifer were 

adopted on the basis of experience and research conducted by Meyer (82) 

for the lower Floyd River basin. Each part of the basin (upland and 

floodplain) was treated separately for groundwater. The model 

computes the monthly soil moisture balance based on incoming and out­

going water masses (rainfall, évapotranspiration, irrigation, etc.). 

The water reaching the soil replenishes the soil moisture content, and may 

excess water above field capacity of the soil goes to a deeper layer 

as groundwater (G) . The groundwater contribution from the uplands was 

added to the deep groundwater aquifers and was not available for dis­

charge to the streams. Groundwater contribution from the flood-

plain was used to calculate the groundwater addition to the surface 

water. The groundwater segment in the model handles this excess water, 

and allocates the monthly distribution of the groundwater contribu­

tions. 

In the model, two subprograms do this task for upland and flood-

plain. These two are: 1) groundwater replenishment from the upland 

and 2) the groundwater budget in the floodplain. The hydromodel results 

show the addition to groundwater from upland is small, and can be treated 

as deep percolation which is not available for use in the 

vicinity of the floodplain. The model maintains the groundwater 

table in the uplands in an almost steady state. In contrast, the flood-

plain alluvial aquifer responds readily to groundwater elevation changes. 

According to Meyer (82), the floodplain in the lower Floyd River has 



www.manaraa.com

114 

a width of about one-half to one mile. Based on this information, 

the necessary assumptions were made for groundwater modeling in the 

floodplain. Figure 14 shows the adopted values (half of the flood-

plain) . The following descriptions give a brief summary about évapo­

transpiration and water demand from the basin. Chapter V gives more 

descriptions about the development of the model, but for an itemized 

step-by-step procedure of the model for hydrological evaluation of the 

processes, it helps to follow Figure 10 (flow chart of the model). 

Evapotranspiration procedure in hydromodel 

Undoubtedly, évapotranspiration is one of the most sensitive and 

important phases in every water budget model. It affects the balance 

of water in every basin and controls the energy budget substantially. 

It is also a very complicated phenomenon, subject to change in time 

and space. So, it has drawn the attention of many scientists who work 

in this area of research. Due to its complicated nature, many methods 

of evaluation are available. Some of them are very responsive to this 

phenomenon. Some detailed methods consider frequent measurements in 

small plots and in determining the amount of évapotranspiration. More 

general procedures frequently are also needed. Fortunately, there 

are many approaches available. There are some methods, such as 

the Penman, Thornwaite, Christiansen, Blaney-Criddle, etc. , 

that are universally accepted for general application. Also, there is 

general agreement that the Penman method is the best for obvious reasons. 

It is the best because it considers more factors contributing to 

évapotranspiration. The only disadvantage of this method is that not 
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all data required for the equations are available for every location. 

The relation between the evaporation pan and the Penman methods, 

to achieve a better estimation of évapotranspiration in a project, has 

been a matter of consideration among the researchers for a relatively 

long time. A compromise should be made between the accuracy of the 

methods available, the availability of data and the amount of effort 

needed for evaluation of this phenomenon. 

For this particular model, for the stated objectives, it is 

believed that the Blaney-Criddle method is adequate. However, it 

may not be the best for Northwest Iowa. According to Shaw (101b), the 

Penman method is the best for this area. But again, this idea originates 

from the view of a detailed model where a precise relationship between 

soil moisture, rainfall and crop vegetation, preferably in small plots, 

is the main concern. The generality of the hydromode1, particularly 

for monthly periods, does not necessitate the detail or the ac­

curacy of the Penman method. The copy of the program and sample 

output (in the next chapter) lists the assumed input coefficients 

and other elements of the Blaney-Criddle method. The sample output 

also lists the computed monthly évapotranspiration as well. The com­

puted values seem to be reasonable for this area. 

The Blaney-Criddle method for evaluation of évapotranspiration is 

as follows (99): 

for monthly calculations and 

U = KF (66) 
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for the entire growing season calculations, where : 

u = monthly consumptive use (évapotranspiration), in., 

k = monthly consumptive use coefficient, obtained from experi­

mental data, 

t = mean monthly temperature, °F, 

p = monthly percent of daytime hours, 

f = = monthly consumptive use factor, 

U and K = correspond to u and k of Equation (65), and 

F = sum of monthly consumptive use factors for the season. 

The consumptive use coefficient "k" is a product of two coefficients, 

k^ and k^, which are called "crop growth stage coefficient" and "cli­

matic coefficient," respectively. Based on experimental data, Blaney 

and Griddle (15) present graphs of k^ versus the times of growing for 

several crops. A mathematical function: 

k^ = 0.0173t - 0.314 (67) 

where t is average temperature in °F, is used for k^ evaluations. The 

hydromodel uses Equation (67) and the k^ values given as inputs for 

consumptive use calculations. 

Beneficial Water Use in Floyd River Basin at Alton 

The ultimate objective of every water resource project is seeking 

the ways that the available resources can be used beneficially. The 

type of beneficial use of water depends much on the goal which is pur­

sued. Among the goals of water resources projects, which may be 
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tangible or intangible, one goal is certain. That is, even before a 

question of economics is approached, the basic water need of living 

creatures should be provided. Thereafter, the problems of economical 

development and other goals will be of concern. Of course, some type 

of economical or political planning within the range of water supply 

for living creatures in the area will lead to a better and more bene­

ficial use of water. 

The following typical population numbers and water consumption in 

gallons per capita per day (gpcd) were obtained from tables and informa­

tion available in a report by Rossmiller (94). This information, 

combined with physiographic characteristics of the basin, provide the 

necessary means for determining water consumption in the area under 

study. 

The total area of the basin (Floyd River basin at Alton) is 265 

square miles and covers three Iowa northwestern counties partially 

as follows: 

23% of O'Brien County 

12% of Sioux County 

3% of Osceola County. 

The population of the major towns located in the basin as well as 

total rural population of the counties for three decades are as found 

in Table 10. 

The total acreage of crops and hay in the counties under considera­

tion and for three typical years are as shown in Table 12. 
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Table 10. Name of the communities, counties and their population^ 

Name of 
town or Name of Population in years of 

community county 1950 1960 1970 

Sanborn O'Brien 1,337 1,323 1,465 

Sheldon O'Brien 4,001 4,251 4,532 

Archer O'Brien 167 209 134 

Alton Sioux 1,038 1,048 1,018 

Hospers Sioux 604 600 646 

Total rural 
of county 

O'Brien 
Sioux 
Osceola 

8,239 
13,454 
5,960 

7,675 
12,342 
5,313 

6,307 
10,713 
4,258 

^After Rossmiller (94). 

Table 11. Number of marketed livestock for 
tion and for three typical years 

three counties under considera-
a 

Name of Type of No. of livestock for years 
county livestock 1952 1960 1970 

O'Brien Cattle 
Hogs^ 

28, 
220, 

947 
782 

51,057 
229,850 

97,598 
236,156 

Sioux 
Cattle 
Hogs^ 

56, 
361, 

581 
462 

98,114 
368,420 

217,467 
447,510 

Osceola 
Cattle 
Hogsb 

12, 
109, 

653 
198 

28,740 
113,744 

50,176 
104,630 

After Rossmiller (94). 

Data belongs to years 1967, 1970 and 1976 rather than 1952, 1960 
and 1970, respectively. 
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Table 12. Crop acreage and the counties^ 

Name of 
county Year Corn Soybeans Hay 

1952 128,510 35,090 29,554 
O'Brien 1960 152,932 53,457 25,708 

1970 132,320 95,187 15,211 

1952 185,085 24,757 33,234 
Sioux 1960 230,864 27,075 38,968 

1970 178,149 56,754 37,051 

1952 91,214 20,658 17,623 
Osceola 1960 109,354 35,007 19,333 

1970 86,458 60,820 13,368 

^After Rossmiller (94). 

A summary of rate of demand showing typical values are presented in 

Tables 13, 14, 15 and 16. 

Table 13. Projected water use rates in the Iowa portion of the Missouri 
River basin (gpcd)^ 

Range of population Water use rate (gpcd) 

2500-7000 125 

Less than 2500 80 

Rural homes: 
With pressurized system 50 
Without pressurized system 10 

^After Rossmiller, et al. (95), 
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Table 14. Water demand by community size in the SICOG region for year 
19703 

User category Demand (gpcd) 

Individual rural households 
and unincorporated communities 40 

Incorporated communities: 
Population below 500 58 
Population below 500- 750 64 
Population below 750- 1,000 6 9  
Population below 1,000- 1,500 76 
Population below 1,500- 2,000 82 
Population below 2,000- 3,000 91 
Population below 3,000- 5,000 103 
Population below 5,000-10,000 123 

^After Austin and Patten (4). 

Table 15. Municipal and industrial typical water use (gpcd) 

Year Central supplies Industrial Total 

1960 78 32 110 

1980 93 35 128 

Table 16. Typical values for livestock water consumption cited by 
Schulz and Austin (100b) and presented by Rossmiller (94) 

In terms of gallons per day 
Livestock Average Peak 

Cattle 

Hogs 

6 . 6  

1.5 

9.0 

2 . 1  
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Thus far, these tables give the information necessary for defining 

some average values of water consumption in the area under study. Al­

though the water resources in the basin should meet the demand in the 

basin, the main reason for this part of the study is to estimate the 

water needed to be pumped from the shallow surficial aquifer. Based 

on experience and information presented, some typical values are 

adopted to represent that part of total demand which should come from 

the groundwater of the basin, extracted by the hydromode1, etc. There­

fore, some appropriate rates were selected to represent average 

values for the area under study. These estimated values fulfill the 

model requirements. However, for a more detailed study, more recent 

values are needed. Table 17 represents the adopted values. 

Table 17. Adopted average demands for different user categories 

User category Demand as average 

Communities (population 
consumption) 60 gpcd 

Municipal & industrial 100 gpcd 

Rural consumption 30 gpcd 

Livestock: 
Cattle 8 gpd/head 
Hogs 2 gpd/head 

To find the total demand in the Floyd River basin at Alton, the 

following assumptions were made: 

1, The total rural population living in the basin is proportional 

to the percentage of the total area of the county contributing 
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to the total area of the basin; 

2. The total number of livestock existing in the basin is propor­

tional to the percentage of the total area of the county-

contributing to the total area of the basin; 

3. the total acreage of vegetation existing in the basin is 

proportional to the percentage of the total area of the county-

contributing to the total area of the basin; and 

4. The rural population, number of livestock, and other 

data are uniformly distributed over the area of the 

county. 

Considering the percentages of the area of each county 

contributing to the total area of the basin, the following values are 

obtained. The year 1960 is considered to represent average data for 

the duration under study (1956-1970). 

Table 18. Estimated rural population living in the Floyd River basin 
above Alton 

Name of 
county 

7o of contribution 
to the basin Population 

O'Brien 23 1,765 

Sioux 12 1,481 

Osceola 3 159 

Total 3,405 
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Table 19. Estimated population of the towns 
River basin above Alton (year 1960 

existing in the Floyd 
as a typical year)& 

Name of 
town Population 

Sanborn 1,323 

Sheldon 4,251 

Archer 209 

Alton 1,048 

Hospers 600 

Total 7,431 

^After Rossmiller (94). 

Table 20. Estimated water demands for municipalities and rural residents 

Type Population Rate (gpcd) Total demand (MGD) 

Towns 7,431 60 0.44 

Rural 3,405 30 0.10 

Municipal & 
industrial 
(only in towns) 7,431 100 0.74 

Total 1.28 

Tables 21 and 22 show the estimated number of livestock in the 

basin and the estimated water demand. The values adopted assume these 

numbers of livestock are present 12 months of the year, to average the 

relative on-farm time-of-use between short-term market animals and carry­

over breeding stock. 
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Table 21. Number of livestock in the Floyd River basin 

Name of % of contribution 
Head 

in 
of livestock 
the basin 

county to the basin Cattle Hogs 

O'Brien 23 11,743 52,865 

Sioux 12 11,773 44,210 

Osceola 3 862 3,412 

Total 24,378 100,487 

Table 22. Livestock water demand in the Floyd River basin above Alton 

Type of No. of Rate of demand Total demand 
livestock head gpd/head MGD 

Cattle 24,378 8 0.20 

Hogs 100,487 2 0.20 

Total 0.40 

Finally, the total water demand in the basin for domestic, municipal, 

industrial and livestock is 1.68 MGD or 155 ac-ft/month. 

Irrigation water use in Floyd River Basin above Alton 

Irrigation water is indeed a part of beneficial water use. It 

had to be separated from other uses in this study. Since the computer 

program of the hydromodel considers this beneficial water use implicitly 

along with its execution of other procedures, not much explanation of 

the calculation of irrigation water is needed in this section. However, 

Chapter VII provides more information about this complementary process. 
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The computer program of the hydromodel can introduce the varying 

amounts of irrigation water as a component of the water balance in the 

basin. The amount of water needed for irrigation is the amount required 

to compensate for évapotranspiration deficiencies, to maintain the steady 

growth of the crops (irrigation water). According to the model, this 

water together with other beneficial water uses should come from sur-

ficial aquifers in the basin. Therefore, it affects the groundwater 

table fluctuations. 

The amount of consumptive use in the basin is calculated by the 

Blaney-Griddle method as described earlier in this chapter. The com­

puter algorithm considers only the floodplain as a suitable area for 

irrigation development. After computing the amount of évapotranspira­

tion (using the Blaney-Criddle method and appropriate input data), 

the model determines the soil moisture balance. If inadequate soil 

moisture is available, the model determines the amount of irrigation 

water to be applied in order to bring the soil moisture back to field 

capacity. The irrigation water is lumped together with the other 

beneficial water uses and is withdrawn from the surficial aquifer. 

As it will be seen later, the withdrawal of the beneficial water use 

from the surficial aquifer is intended to cause the groundwater 

table to fluctuate, and initiate a surface water and groundwater inter­

action. The following section describes the procedures used in the 

hydromodel, and the location in the hydromodel of the program for benefi­

cial water use extraction from the surficial aquifer. 
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Step-by-Step Procedures of the Hydromodel 

Figure 10 shows the flow chart of the model. The model takes the 

following steps, as instructed through the computer algorithm. 

1. It determines the net amount of precipitation falling to 

the ground through the implementation of interception 

and sublimation processes. 

2. It calculates the amount of surface runoff based on the 

precipitation that reached the ground surface. 

3. It considers the precipitation reaching the ground, minus 

the calculated surface runoff, as available water for in­

filtration. 

4. The infiltrable water enters the soil to provide the source 

of water for plant growth and the subsequent évapotranspira­

tion. 

5. The model does a mass balance on the soil moisture to determine 

increases in soil moisture and additions to the surficial 

or deep groundwater systems. 

6. If a demand of beneficial water use is imposed, it extracts 

the required water from the surficial aquifer and determines 

the change in the groundwater table elevation. 

7. The model calculates the amount of water moving either into 

or from the stream into the groundwater system using the one-

dimensional Darcy equation. 

8. The water table elevation is adjusted to account for the 

surface water/groundwater interactions. 



www.manaraa.com

128 

9. The model accumulates totals for the various processes. 

The following chapters provide more information about the develop-

and application of the model. 
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CHAPTER V. DEVELOPMENT, CALIBRATION AND TESTING OF THE MODEL 

Development and Calibration 

In previous chapters, some definitions, theories and concepts 

were introduced to direct the reader towards the development of a 

simulation model, with specific attention given to a hydro-

model. Almost all contributing elements for such a model have been 

described previously, including the hydrologie relations between the 

various elements. 

To understand the program, the reader should be familiar with 

these previous sections. In summary, the objective was to model a 

complex hydrologie system which could respond adequately to actual 

hydrologie events, and predict the cause and effect of these events on 

the system. The model was constructed on the basis of mathematical 

functions describing all necessary hydrologie relationships and was 

written in a programming language which can be used on a digital 

computer. 

To develop the simulation model for the system (Floyd River basin 

at Alton, Iowa), like any other simulation model, three basic steps 

are necessary: 1) the simulation model should consider the continuity 

of inputs and outputs and treat the hydrological cycle as a closed 

system; 2) the simulation model should consider the linkages between 

the processes, based on the concepts valid for natural, complex 

phenomena; and 3) the simulation model accuracy should be examined 

through a set of criteria. These three steps were addressed in 

developing the model to assure completeness. 



www.manaraa.com

130 

For the first step (continuity of inputs and outputs), the inputs 

for the hydromodel include monthly hydrometeorologic data on precipita­

tion, temperature and stream flow. In addition to these, other data 

such as physical and process parameters of the basin are introduced. 

The sample printout of input data (Figure 15) shows all of the input 

data. To find the name of each variable, if it is not stated directly, 

the reader should refer to the appropriate statement in the text of 

the program. Tables 23, 24 and 25 show the dominant hydrometeorological 

input data of total monthly rainfall, average monthly temperature and 

total monthly streamflow, respectively, for a period of 23 years (1956-

1978) which were later used for various verification runs. It is important 

to mention that the computer program considers the rainfall and stream-

flow in terms of ac-ft per month and makes the necessary conversions 

of input data. The output of the model consists of many mass balance 

calculations, as Figure 16 shows. Figure 17 shows the output for 

évapotranspiration. The listed input and output printouts, as shown 

in Figures 15, 16 and 17, are for just one year of assigned record. 

The model operates on a monthly time period with calculations accumulated 

to determine the annual values. Therefore, a set of printouts is ob­

tained for each year in the length of record introduced to the model. 

For the second step (the linkage between processes), the different 

algorithms for different processes are linked together within the 

computer program and the program is clearly segmented. The reader 

can follow the linkage easily. The mathematical equations consider all 

necessary parameters which influence the physical and logical relation­

ships to actual processes such as estimation of surface runoff (SRC), 
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Table 23. Average precipitation for the whole basin^ 

N D F M 

1956 1.64 0.59 0.76 0.64 0,38 0.56 

57 0.76 2.21 0.40 0.26 0.45 1.34 

58 3.04 2.09 0.17 0.12 0.78 0.53 

59 0.07 0.81 0.29 0.18 1.34 1.56 

1960 2.74 2.02 1,41 0,39 0.31 1.57 

61 0.67 1.07 0.88 0.24 1.49 2.19 

62 1.33 0.64 1.17 0.30 3.07 2.05 

63 0.92 0.27 0.32 0.64 0.55 1.10 

64 1.02 0.13 0.43 0.22 0.10 1.54 

65 0.76 0.29 1.05 0.44 1.65 2.75 

66 0.90 0.57 0.60 1.01 1,04 1.49 

67 2.16 0.27 1.04 0.72 0.38 0.3 

68 1.04 0.12 0.59 0.36 0.05 0.35 

69 5.45 0.57 1.91 1.40 1.84 1.86 

From U.S.W.B. (110). 
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Table 23. Continued 

0 N D J F M A M J J A S 

1970 2.08 0.21 1.32 0 . 2 7  0.31 2.03 1.77 4.53 1.86 1.85 0.73 6.11 

71 3.91 1.25 0.79 0.07 1.78 0.96 1.22 2.50 8.39 2.72 1.08 1.35 

72 3.01 2 . 0 3  1.13 0.17 0.24 0.98 3 . 2 6  5.27 2.11 6.31 2.78 1.87 

73 2.12 1.64 1.64 0.86 0.71 2 . 3 4  1.30 2.72 2.95 4 . 8 0  6.03 4.39 

74 1.25 2.0 0.82 0.16 0.09 1.14 1.64 3.10 3.28 1.07 8.19 0.94 

75 1.40 0.71 41 1.99 0.32 1.94 4.08 2.25 7.45 0.45 6.69 2.01 

76 0.29 3.14 0.10 0.17 0.66 3.03 1.91 2.21 2.68 2.17 0.83 2.38 

77 0.94 0.06 0.55 0.22 0.62 3.61 2 . 3 2  3.28 2.79 5.68 4.18 3.75 

78 3.04 2.26 1.35 0.25 0.61 0.35 3.64 2.25 2.15 6.96 3 . 7 2  1.73 

Ave. 1.76 1.09 0.83 0.48 0.84 1.55 2.11 3.51 3.69 3.37 3.67 2.94 
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Table 24. Runoff in inches for Floyd River at Alton station^ 

0 N D J F M A M J J A S 

1956 0.009 0.006 0.002 0.001 0.001 0.045 0.049 0.037 0.018 0.019 0.064 0.004 

57 0.001 0.006 0.003 0.002 0.001 0.100 0.050 0.046 0.134 0.173 0.013 0.014 

58 0.029 0.047 0.025 0.009 0.014 0.029 0.102 0.041 0.120 0.014 0.002 0.001 

59 0.001 0.001 0.001 0.001 0.001 0.003 0.015 0. 298 0.302 0.032 0.076 0.006 

1960 0.012 0.011 0.033 0.022 0.013 0.877 0.511 0.137 0.002 0.049 0.324 0.246 

61 0.11 0.07 0.04 0.02 0.09 1.60 0.27 0.20 0.16 0.06 0.06 0.04 

62 0.03 0.03 0.01 0.008 0.09 2.59 1.12 0.22 0.67 0.15 0.08 0.10 

63 0.05 0.03 0.02 0.01 0.009 0.12 0.05 0.03 0.02 0.02 0.02 0.007 

64 0.003 0.006 0.005 0.001 0.001 0.02 0.03 0.06 0.02 0.11 0.01 0.13 

65 0.03 0.02 0.008 0.003 0.01 0.75 2.67 0.48 0.30 0.08 0.02 0.06 

66 0.29 0.10 0.08 0.03 0.64 0.15 0.23 0.13 0.22 0.02 0.01 0.004 

67 0.01 0.01 0.009 0.003 0.008 0.33 0.04 0.02 0.64 0.06 0.02 0.005 

68 0.004 0.008 0.008 0.002 0 0.01 0.02 0.01 0.009 0.02 0.001 0.04 

69 0.23 0.09 0.04 0.007 0.009 0.43 3.81 0.22 0.21 0.41 0.13 0.05 

^From U.S.G.S. (111). 
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Table 24. Continued 

N D J F M A M 

1970 0.02 0.03 0.02 0.01 0.05 0.73 0.44 0.28 0.15 0.03 0.009 

71 0.04 0.05 0.02 0.004 0.99 0.30 0.16 0.07 1.87 0.18 0.03 

72 0.03 0.04 0.02 0.007 0.004 0.88 0.12 0.65 0.41 0.38 0.19 

73 0.05 0.16 0.21 0.47 0.17 1.57 0.41 0.27 0.32 0.49 0.38 

74 0.35 0.28 0.17 0.09 0.16 0.22 0.32 0.23 0.44 0.10 0.22 

75 0.07 0.08 0.06 0.02 0.006 0.77 1.57 0.68 1.75 0.29 0.31 

76 0.06 0.09 0.10 0.03 0.12 0.48 0.29 0.20 0.14 0.05 0.01 0.006 

77 0.01 0.01 0.0001 0.0001 0.0001 0.08 0.04 0.04 0.02 0.07 0.04 0.02 

78 0.06 0.24 0.14 0.02 0.01 0.87 0.45 0.27 0.19 0.53 0.13 0.05 

Ave. 0.065 0.062 0.045 0.033 0.104 0.563 0.555 0.201 0.353 0.145 0.093 0.052 
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Table 25. Mean monthly temperature for Sheldon, Iowa station^ 

0 N D J F M A M J J A S 

1956 51.3 26 13.6 12.9 15.5 29.3 42.2 59.9 74.6 70.3  70.6 61.6 

57 57.0 33.1 25.4 10.3 24.5 31.8 46.4 56.7 66.5 76.8 70.6 58.9 

58 48.0 33.4 29.1 23.8 16.6 32.8 47.3 62.2 65.6 69.3 73.3 64.1 

59 53.5 36.1 17.2 12.1 14.6 33.4 47.6 60.1 71.1 71.9 74.7 61.3 

1960 45.5 24.6 30.1 16.1 17.1 18.2 47.3 58.2 65.3 71.7 71.9 62.6 

61 51.1 37.2 20.7 14.8 23.0 34.4 41.9 55.5 67.9 70.8 71.2 59.5 

62 51.8 33.3 16.0 11.5 17.8 24.1 45.4 63.5 66.6 70.1 69.9 58.8 

63 53.0 39.5 22.9 7.5 19.5 38.3 50.5 59.2 72.9 74.3 70.4 64.8 

64 59.7 39.8 12.8 23.3 26.1 27.7 48.0 63.0 68.9 75.9 67.4 60.6  

65 49.9 35.4 16.4 13.7 15.5 21.2 45.5 62.4 68.1 71.9 69.4 54.0 

66 53.0 34.3 29.5 8.9 19.0 38.1 42.5 56.3 68.7 76.5 67.9 60.8 

67 49.4 32.0 20.4 17.9 16.8 37.5 47.7 54.2 66.8 70.9 68.3 61.4 

68 48.4 33.2 23.6 17.0 19.4 40.6 49.0 54.3 69.8 71.7 71.6 60.6 

69 50.8 33.5 17.1 9.7 20.9 21.7 48.6 60.5 62.5 73.7 71.3 62.5 

*From U.S.W.B. (110). 
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Table 25. Continued 

O N D J ' F M A M J J A S  

1970 45.2 34.9 20.4 6.8 12.1 27.2 46.8 61.5 71.1 73.8 71.9 62.3 

71 47.5 33.6 18.6 10.1 20.6  31.6 49.0 56.9 72.6 69.1 69.5 61.6 

72 53.1 34.9 20.2 10.2 13.5 32.3 45.3 60.1 67.9 69.2 69.0 60.1 

73 46.4 32.9 14.5 18.5 22.9 39.9 46.4 57.4 70.0 72.0 72.4 60.1 

74 54.5 35.4^ 18.2^ 14.2^ 24.5^ 34.7 49.3^ 57.4^ 67.7^ 76.7^ 67.1 58.0 

75 52.2 34.8  23.6 16.3 16.7 25.2 41.3 62.2 67.3 75.1 72.4 57.9 

76 53.1 35.8 23.1 17.5 30.7 34.3 52.0 58.4 70.0 74.8 72.7 63.1 

77 44.8 28.5 17.3 6.4 26.8 38.2 54.6 66.8 70.5 74.6 67.5 62.9 

78 48.6  32.7 17.8 4.8 10.8 31.6 45.9 59.8 69.0 72.1 70.7 66.8 

^Estimated by means of neighboring stations. 
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S U R F A C E  R E T U R N  F L O W  0 «  0 .  0 .  0  •  0 .  0 .  0 .  0  »  0 .  0 .  0 .  0 .  0 .  
G W  r v S  T U R N  F L O - 0  .  0 .  0  .  0 .  0 .  0 .  0 .  0  .  0  .  0 .  0  .  0 .  0 .  

C R O P L A N D  P R E C I P I T A T I O N  2  3 6  I  2 .  2  5 3 3  .  1 6 7 9 0 .  3 4 3 a  .  3 ^ 4 3 .  2 5 8 2 2 .  2 2 5 1 4 .  5 1 3 5 9 .  2 0 8 2 0 .  2 0 0 0 2 .  7 8 9 3 .  6 9 9 4  7 .  2 6 9 3 7 5 .  
S N O W  i T C R A G E  A D D E D  0 .  0  .  5 2 5 6 .  - 4 9 1  I .  2 1 0 2 .  9 3 5 6 .  -  I  1  8 0 6  .  0  .  0 .  0 .  0  .  0 .  0 .  

A C C U M  S N O k  l ^ T O R A G E  3  .  0 .  0  .  5  2 5 6 .  3 4 5 .  2 4 4 7 .  1 1 8 0 6 .  0  .  C  .  0 .  0  .  0 .  0 .  
D E T E N T I O N  O N  C R O P S  J  .  0 .  1  8 7 4  .  1 9 5 5 .  5 0 8 .  4 4 0 9 .  2 2 4 7 .  0 .  0 .  0 .  0 .  0 .  1 0 9 9 4 .  
S U O L l M - a r i O N  F R O M  C R O P S  0 .  0  •  9 2 7 0 .  6 3 9 0 .  1  1 0 5 .  6 2 J f > .  0  .  0  •  0 .  0 .  0 .  2 3 0 0 5 .  

S N O W  M E L T  0  .  0  .  3 9 0 .  0 .  2 2 7 .  5 6 1  o .  9  5 5 6 .  0 .  0  .  0 .  0 .  0  .  I  5 9 9 0 .  
R O O T  Z O N E  5 U P ? » L i r  2 1 9 9 7 .  •  2 5 2 9 .  1 8 7 4 .  1  9 5 5 .  5 0 8 .  4 4 0 9 .  2 4 7 6 2 .  4 3 1 5 6 .  2  0 * 6 ? .  1 9 4 5 9 .  7 8 8 7  .  6 9 7 6 6 .  2 2 3 7 6 6 .  
C R O P L A N D  D . c . U .  1 3 8 3 1 •  6 1 3 7 .  0 .  0 .  0 .  0 .  1 6 1 6  1 .  3 4  0 6  1 .  5 3 0 5 9 .  6 0 9 0 0 .  5 0 5 2  7 .  2 9 7 0 6 .  2 t ) 6 3 8 0 .  
R Z  S U P P L  f - P . C . J .  8 1 6 6 .  - 3 6 0 7 ,  1 8 7 4  .  I  9 5 5 .  5  0 8 .  4  4 0 9 .  6 6 0 1  .  1 4 0 9 5 .  -  3 2 5 9 4  ,  - 4 1 4 4 1 .  - 4 2 6 4 0 .  4  0 0 6 1 .  - 4 2 6 1 3 .  

A C C U M  S O I L  M O I S T U R E  I - 3  9 8  8 6 .  4 8 0 5 2 .  4 4 4 4 5 .  4 6 3 1 9 .  4 8 2 7 4 .  4 6 7 8 2 .  5 3 1 9 2 .  5 9  7 9  3 .  7 3 8 8 8 .  4 1 2 9 4 .  0 .  0 .  4 0 0 6  1 •  
C O N S .  U S E  D E F I C I T  0 .  0  .  0 .  0 .  0  .  0 .  G .  0 .  0 .  -  1 4 8 .  - 4 2 6 4 0 .  0 .  - 4 2 7 8 8 .  

A C T U A L  C R O P L A N D  C . U .  1 3 8 3 1 .  6 1 3 7 .  0 .  0  .  0 «  0 .  1 8 1 6  1 .  3 4 0 6 1  .  5 3 0 5 0 .  6 0 7 5 2 .  7 8 8 7  .  2 9 7 0 6 .  2 2 3 5 9 2 .  
I N T E R F L O W  A D D E D  0 .  0 .  0 .  0 .  0 .  0 .  0 .  0 *  0 .  0 .  0  .  0 .  0 .  

A C C U M  I N T E R F L O W  Ï - 0 .  0 .  0 .  0 .  0 .  0 .  0 ,  0 .  0 .  0 .  0 .  0 .  0 .  
D E T E N T I O N  C N  W E T L A N D  0  .  0 .  2 0 6 .  2 1 7 .  5 6 .  4 9 0 .  2 5 0 .  0  .  0 .  0 .  0 .  0 .  1 2 2 2 .  
S U B L I M A T I O N  F F O M  W E T L A N D  0  .  0  .  t  0 3 0  .  7 1 0 .  1 2 3 .  6 9 3 .  0 .  0 .  0 .  0 .  0 .  0  .  2 5 5 6 .  

G R O U N D W A T E R  A D D I T I O N  0 .  0 .  0 .  0  .  J .  0 .  0 .  0 «  0 .  0 .  0 .  0 .  0 .  
G R O U N D W A T E R  T O  S U R F A C E  3 6 .  3 4  .  7 2  .  9 2 .  7 4 .  -  5 0 .  - I  1 2 .  - 8  .  7  I  .  6 3 .  8 8 .  7 4  .  4 9 5 .  

D O M E S T I C  U S E  3 .  0 .  0  .  0  .  0 .  0 .  0 .  0 .  0 .  0 .  0 .  0  .  0  •  
I R R I G A T I O N  F O R  W T U C R Q P S  0 .  0  .  0 .  0 .  0  .  0 .  0 .  0  .  0  .  0 .  0 .  0 .  0 .  
E X P O R T S  0 .  0 .  0 .  0 .  J .  0 .  c .  0  .  0 .  0 .  0 .  0 .  0 .  

S U R F A C E  S U P P L Y  T O  W L  0  .  0  .  0 .  0  .  0 .  0 .  0 .  0 .  0 .  0 .  0 .  0 .  0 .  
W E T L A N D  P R E C I P I T A T I O N  2 6 * 6 .  2 8 2  .  1  3 6 6 .  3 9 2 .  4 3 8 .  2 8 6 9 .  2 5 0 2 .  5 7 4 2 .  2 3 I .1. 2 2 2 2 .  8 7 7 .  7 7  7 2 .  2 9 9 3  I .  
R U N O F F  F R O M  F L O O D P L A I N S  2 0 2  .  \ .  4 3 .  0  .  2 5 .  6 4 6 .  1  0 6 2 .  4 1 1 .  4 0 .  6 0 .  1  .  2 0 .  2 5 1 2 .  
S N O W  S T O R A G E  A D D E D  0 .  0  .  5 8 4  .  - 5 4 6 .  2 3 4  .  I  0 4 0 .  - 1 3 1 2 .  0 .  0 .  0 .  0 .  0 .  0 .  

A C C U M  S N O W  S T O R A G E  0  .  0  .  0 .  5 8 4  .  3 8 .  2 7 2 .  1 3 1 2 .  0  .  0 .  0 .  0  .  0 .  0 .  
S N O W  M E L T  0 .  0 .  4 3  .  0 .  2 5 .  6 4 6 .  1  0 6 2  .  0  .  0 .  0 .  0 .  0 .  I  7 7 7  .  

T O T A L  S U P P L Y  T O  W L  2 4 4 4  .  2 8 1  .  2 0 8 .  2 1 7 .  5 6 .  4 9 0 .  2 7 5 1  .  5 3 5 1  .  2 2 7 4 .  2 1 6 2 .  8 7 6 .  7 7 5 2 .  2 4 8 6 3 .  
P O T E N T I A L  W E T L A N D  C U  1 4 7 3 .  6 5 0  .  0 .  1  .  0 .  0 .  1  9 6 4  .  1 6  7 6  »  5 6 0 7 .  6 4 1 9 .  5  3  3  9 .  3 1 1 5 .  2 8 2 4 3 .  
T S W L - W L  P . C . U .  9 7 2 .  - 3 6 9 .  2 0 8 .  2  I  7 .  5 6  .  4 9 0  .  7 8 7  .  I  6 7 5 .  - 3 3 3 3 .  - 4 2 5 7 .  —  4 4 6 3  *  4 6 3  7  .  - 3 3 8 1 .  

A C C U M  W L  S O I L  M O I S T  I - 5 2 7 4  .  6 2 4 6  .  5 8 7 7 .  6 0 8 5 .  6 3 0 2 .  6 3 5 9 .  6 6 4 9 .  7  6  3 6  .  9 3 1  0 .  5 y 7  /  .  1  7 2 0  .  0 .  4 6 3 7 .  
W E T L A N D  D E F I C I T  0  .  0  .  0 . 0  .  0 .  0 .  C .  0  .  0 .  0. - 2 7 4 3 .  0 .  - 2 7 4 3 .  

A C T U A L  W E T L A N D  C . U .  1 4 7 3 .  6 5 0 .  0  .  0 .  0 .  0 .  1  9 6 4  .  3 6 7 6  .  5  6 0 7  .  6 4  1 9 .  2 5 9 6 .  3  1 1 5 .  2 5 5 0 1 .  
W L  A D O  T O  S R F C  A N D  G W  0  .  0  .  0 .  0 .  0 .  0 .  0 .  C  .  0  .  0 .  0  .  0  .  0  .  
S U R F A C E  W T f t  I N  C G A N N E L  2 0 5 3 .  1 0 3 .  5 0 4  .  9 3 .  3 2 7 .  6 4 1 0 .  1 0 5 0 9 .  4 1 0 7 .  4 6 8 .  6 6  7 .  9 5 .  2 7 5 .  2 5 6 1 0 .  

T O T A L  O U T F L O W  2 0 5 3  .  I  0 3 .  5 0 4  .  9 3 .  3 2  7 .  6 4  1 0 .  1 0 5 0 9 .  4  1 0 7 .  4 6 P .  6 6 7  .  9 5 .  2  7 5 .  2 5 6 1 0 .  
G W  o u t f l o w  0  .  0  .  0  .  0 .  0  .  0  .  0 .  0 .  0  •  0 .  0 .  0  .  0 .  

S U R F A C E  O U T F L O W  2 0 5 3 .  1 0 3 .  5 0 4 .  9 3 .  3 2  7 .  6 4  1  0 .  I  0 5 0 9 .  4  1 0  7 .  4 6 0 .  6 6  7 .  9 5 .  2  7 5 .  2 5 6  1 0 .  
G A G E D  O U T F L O W  3 3 5 .  3 7 6 .  2 4 8 .  2 0  7  .  7 6 9 .  1 0 3 0 0 .  6 2 1 0 .  3 9 7 0 .  2 0 7 0 .  3 9 3  .  1  3 9 .  5 8  I  .  2 5 5 9 8 .  
D I F F E R E N C E  * C O M P - G A G £ D  I  7 l d .  - 2 7 3 .  2 3 6 .  -  1  1 4 ,  - 4 4 2 .  - 3 0 9 0 .  4 ^ 9 9 .  1 1 7 .  - 1 6 0 2 .  2 7 4 .  - 4 4  .  - 3 0 6 .  1  Z  •  

Figure 16. Mass balance calculations for different processes (Run '0') 
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CONSU-^PTIVE USE CALCULATIONS 
YEAR 1970 OCT NOV DEC JAN F E B  MAR APR 

AVERAGE TEMPERATURE 45.20 34 .90 20. 40 6 . 80 12.10 27.20 46. 80 
RLANEY-CRIDOLE IFÂ 3 .4 I 2.31 1 . 30 0. 45 0.81 2.28 4.20 
AGP ICULTORAL CROPS 

J GHSS UNI T USE (IN.) 2 .20 1 .25 0. 00 0. o c  0. 00 0. 00 2 . H5 
1 GRTSS USE (ACRE-FT) 4200. 2384 . 0 . 0. 0. 0 .  5447. 
2 CORN UNI T USE ( IN.) 0.87 0 , 3 5  0. 00 0 .  00 0 . 00 0.00 1 .22 
2 CORN USE (ACRE-FT) 4773, 1 898. 0 . 0. 0 .  0 .  6659. 
3 SONS UNIT USE (IN.) 0.91 0  .  3 5  0 ,  00 0 .  00 0  . 0 0  0 . 00 1.13 
3 SQNS USE (ACRE-FT) 4853, I 854 , 0  .  0 .  0 .  0 .  6055, 
CROPLAND P.C.U. 13331. 6137. 0 *  0 .  0 .  16161. 

ACTUAL CROPLAND C.U, 13331. 6 137, o .  0 ,  0 .  
WET LAND PHREATOPMYTÊS 

I WTP UNIT USE <IN.) t  . 8 9  0 .88 0 .  0  0  0  .  00 0 .00 J  .  0 0  3. 15 
1 WTR USE (ACRE-FT) 53 . 25 . 0. 0. 0. 0 .  89. 
2 GRSS UNIT USE (IN.) 2.06 1.16 0 .  00 0  ,  ,00 3  .00 0 .00 2. 69 
2 GRSS USE (ACRE-FT) 437, 245 . 0. 0 . 0  .  0 .  570, 
3 CORN UNIT USE (IN.) 0 .80 0 . 32 0 .  00 0, 00 1 . 0 0  0. 00 1.13 
3 CORN USE (ACRE-FT) 4 8 6 .  1 9 7 .  0 .  0 .  0  .  0. B89. 
4 5BNS UNIT USE (IN.) 0 . D7 0 . 3 2  0. 00 0, ,00 0.00 0 . Û 0  1  .09 
4 SBNS USE (ACRE-FT) 494 . 1 8 3 .  0 .  0 .  0 .  0. 61 7. 
POTENTIAL WETLAND CU 1 473. 65 0. 0 .  0 .  0 .  0 .  1 964 . 

ACTUAL WETLAND C.U. 1473. 650. 0 .  0 .  0 .  0 .  1964. 

Figure 17. Output printout for évapotranspiration 
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infiltration, soil moisture capacity and percolation to groundwater. 

The physical characteristics, together with necessary input data , control 

the response of the physical system at each increment of time, which 

in this model is one month. 

For the third step (criteria for accuracy of the model), the 

standards of evaluation are more difficult to describe and are subject 

to change in accordance with the purpose of the study. Although a 

physical criterion such as computed versus measured streamflow has 

been used for initial comparison, the overall criteria for acceptance 

were based somewhat on the experience of the research faculty in 

determining which variables or parameters should be estimated most 

accurately. Since the fluctuation of the groundwater is of greatest 

concern to water users in the valley, it has been the major objective 

of the research for the basic study period (15 years for calibration 

from 1956 to 1970, 8 years for testing from 1971 to 1978 and 23 years 

for final overall application and review from 1956 to 1978), The 

main variable on which the model focused was the volume of water trans­

ferred through the sequential hydrologie processes using precipitation 

as the starting point. With regard to the generality of the model, 

effort was first expended in developing and calibrating a model for 

the first 15 years of data, assuming it would then be responsive to any 

other period of record in the area. To achieve the required accuracy 

and responsiveness, trial computer runs were made with different 

combinations of process parameters. A set of comparisons made between 

the consecutive, the current and the previous runs and the gain or 

loss in improvement was recorded. 
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Since a relatively large number of parameters was considered, 

theoretically the number of trial runs might have been in the thou­

sands or more for a precise calibration. This was neither practical 

nor economical for a model using monthly data. For this reason, in 

every simulation model, a number of assumptions are made. Depending on 

the purpose of the study, the dominant assumptions must be physically 

meaningful. Because of time and monetary limitations for developing 

this model, a combination of trial and error along with experimental 

adjustments, based on intermediate computations or regressions, was 

utilized. The development required six months of effort and over 200 

trial runs. An adequate set of parameters was obtained, and final ad­

justments permitted the research study to be completed. 

The total volume of streamflow during the period of record is of 

primary interest in the model. Due to the many complex relationships 

and data limitations, it was not expected that monthly balances would 

be as accurate. However, a reasonable monthly balance was reached. 

Hydrologically speaking, the resultant errors for estimation of any 

hydrologie event, should lie in the range of + 20% limits as a general 

rule. With some minor exceptions, this condition was met for the 

calibration and testing periods, particularly for annual and period 

of record results (Table 26), It should be kept in mind that one 

criterion adopted for comparison, and the one used for computing the 

error range, was the measured outflow from the basin (total streamflow) 

during the periods of calibration and testing. Since the actual stream-

flow observations and measurements have been carried out as in normal 

practice (USGS program), with no special treatment being imposed for 
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Table 26. Gaged and estimated monthly and annual average volume of 
water for calibration, testing and total durations including 
the percents of errors for estimated versus gaged values 

15 years 8 years 23 years 
Average % err. Average % err. Average % err. 

Duration volume volume volume 
Month Type (ac-ft) (ac-ft) (ac-ft) 

Oct. 
Gag. 
Est. 

787 
564 - 28 

1,196 
940 

- 21 
929 
891 - 4 

Nov. 
Gag. 
Est. 

409 
231 - 44 

1,686 
1,392 

- 17 
854 
715 

- 16 

Dec. 
Gag. 
Est. 

291 
177 - 39 

1,296 
350 

- 73 
640 
299 

- 53 

Jan. 
Gag. 
Est. 

130 
48 

- 63 
1,130 
139 

— 88 
478 
97 

- 80 

Feb. 
Gag. 
Est. 

895 
662 

- 26 
3,571 
853 

- 67 
1,478 
959 

- 35 

Mar. 
Gag. 
Est. 

7,339 
6,494 - 12 

9,139 
9,942 

9 
7,965 
9,952 

25 

Apr. 
Gag. 
Est. 

9,266 
6,890 - 26 

5,914 
7,068 

20 
8,100 
9,348 

15 

May 
Gag. 
Est. 

2,436 
1,615 

- 34 4,246 
1,835 

- 131 
3,066 
2,253 - 27 

June 
Gag. 
Est. 

2,903 
2,007 - 31 

9,076 
7,230 

- 20 
5,050 
4,521 

- 10 

July 
Gag. 
Est. 

1,167 
1,523 

31 
3,703 
3,250 

- 12 2,049 
2,653 

29 

Aug. 
Gag. 
Est, 

793 
1,266 

60 
2,316 
2,038 

- 12 
1,323 
1,534 

16 

Sept. 
Gag. 
Est. 

694 
465 - 33 

790 
688 - 12 

727 
704 

- 3 
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15 years 8 years 23 years 
Average % err. 

Duration volume 
Average % err. 
volume 

Average % err. 
volume 

Month Type (ac-ft) (ac-ft) (ac-ft) 

Annual 
40,616 
35,724 

31,841 
33,927 

7 

more precise measurements, some type of observation errors are ex­

pected. Therefore, for better model testing, more accurate field 

data might be needed. For this reason, and based on the experience 

available, it is concluded that verification through calibration has 

been achieved satisfactorily and the response of the model to the many 

variables is sufficiently accurate to meet the objectives of the 

study. Table 26 shows the percents of error for: 1) the 15-year 

period of calibration (1956-1970), 2) the 8-year period of testing 

(1971-1978), and 3) the total 23-year period (1956-1978). 

As mentioned in previous sections, the model was calibrated for a 

period of 15 years. Theoretically, the model should then work with any 

other period of record and produce the same results within the speci­

fied percent of error. In the case of a very complex hydro-

logic system, this may be impossible unless all the contributing factors 

have been taken into account recursively. For example, the range of 

Testing of the Model 
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input values used for the various parameters should not be exceeded. 

Minor differences occurred in the model between calibration and 

testing runs. This is not such a problem for this model which is a 

lumped one but could be a problem for any other more detailed model. 

For a complex hydrological system, the reason can be attributed to un­

defined relationships not fully described or values which cannot be 

bound. Some of the models' mathematical relationships may not be 

described perfectly at the present stage of hydrology. However, 

some type of response can be expected from the model when it is ap­

plied to different periods or different basins. If different parts 

of the model work in the same proportion for different periods, it 

can be said that the model is responsive. A reasonable stage of 

responsiveness has been reached for the model. 

For the time being, for the input data used, the model works satis­

factorily. The criterion of accuracy of simulation has been met, in 

estimating streamflow and groundwater levels. 

The average percent of error during the study period, 1956-1972, 

is reasonably acceptable. As Table 26 shows, the percent of error 

is not the same for calibration, testing and for the total period 

analysis. For each individual period, it is possible to adjust the 

model in some fashion (changing the coefficients) to reduce the 

average percent of error. But this attempt violates the principle 

of the modeling effort. That is, the analyst is restricted to using 

the calibration period only. In this study another set of trial and 

error attempts took place to improve the outcome of the model for 

both calibration and testing periods. The testing period, for example. 
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was a period of much greater rainfall, etc. Although the range of 

errors became wider (more than + 20%) for monthly results, annual 

period results remained within the range. In a wider sense, due to 

the theory of "central limit theorem," in a long series of durations, 

theoretically in an infinite series, the average percent of error tend 

to be zero. This fact can be visualized from Table 26 which indicates 

that the algebraic sum of the errors for three durations has the tendency 

towards zero. Consequently, the conclusion is reached that the percent 

of error results are compensative rather than additive. So, in another 

sense, the percent of error will decrease if the number of years in 

the period increases. This fact also is apparent in Table 26 which 

shows the percent of error values for the total period of study (months 

and years) are generally lower than those of the other two periods. 

These illustrate that the model behaves correctly and proportionally. 

But it is important to note that it somewhat overestimates streamflow 

in the dry years, underestimates the wet years and simulates best 

in years of average precipitation. This is a very important point 

when the model is applied to a relatively short period of hydrologie 

record. However, this will tend to give conservative results for drought 

year groundwater levels, since less groundwater contribution is fore­

cast. 

Results of Testing of the Model 

Surface and groundwater interaction is one of the main objectives of 

the study. Groundwater table fluctuation in the alluvial aquifer 
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of the basin can be used to best describe this interaction. To in­

crease the validity of the model and cover several possible combina­

tions of the variables, different conditions were introduced into the 

model. For each condition, the criteria of accuracy were carefully 

considered and those tests which were acceptable were chosen for 

presentation later in this chapter. 

In the case of groundwater table fluctuations in the shallow 

aquifer of the basin, the most important factor is the amount of 

water withdrawn from the shallow aquifer for beneficial water use. 

Chapter IV included the method for estimating beneficial water use 

in the basin. The estimate of beneficial water use (except irrigation) was 

estimated to be 155 ac-ft per month to be applied to the total period 

of testing (1956-1978). Using the same source of information (94), 

it is projected that the total water consumption in the year 1980 and 

the year 2020 are 175 and 235 ac-ft per month, respectively. This 

beneficial water use includes industrial, municipal, rural, livestock, 

farmsteads and homestead uses. Another important water use withdrawn 

from the shallow aquifer is water for irrigation. The computer program 

responds to irrigation demands in the floodplain when it is needed. 

Table 27 shows the summary of conditions imposed in the first set of 

testing. Run numbers hereafter will be used to distinguish the 

curves which are presented later. In this first set it is assumed 

that the floodplain covers 10% of the whole basin. Figures 15, 16 

and 17 belonged to Run '0' and provided all necessary information 

about the inputs and outputs of the model as samples of input and 

output printouts. Charts of Figures 18, 19 and 20 also belong to Run 
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Table 27. Condition imposed for the first set of testing^ 

Run No. 

Amount of 
withdrawal from 

aquifer 
ac-ft/month 

7o of irrigation 
in floodplain 

Average 23-
year period 

total irrigation 
season use 

(total depth in in.) 

0 0 0 0 

1 15.5 0 0 

2 155 0 0 

4 155 100 4.21 

6 235 100 4.21 

^Runs '0' through '4' are for the current situation, and Run 
'6' is for future conditions, for the years 1980 and 2020, respec­
tively. 

'0' and present the mass balance of the model in terms of total ac-ft 

accumulated during the 23-year period, average annual depth in inches 

over the basin and percentage of total rainfall, respectively. These 

values represent the annual average amounts during 23 years of 

data used in testing. Figures 21, 22 and 23 give the annual soil 

moisture variations during 23 years data of testing for those months 

of crop cultivation and maximum growth (June-July-August). Figures 

24 and 25 show the same variable for the months of May and September, 

respectively. These soil moisture values compare favorably with the 

relative frequencies of various soil moisture deficits as calculated 

by Rossmiller (94). 
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Figure 18. Water mass distribution for different processes (ac-ft). ISU unit hydromodel for 
Floyd River Basin at Alton based on 23-year average. X = pumped water; e = efficiency 
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Figure 19. Rainfall depth distribution for different processes (in.). ISU unit hydromodel for 
Floyd River Basin at Alton based on 23-year average 
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Figure 20. Percentages of distribution compared to that of total rainfall. ISU unit hydromodel 
for Floyd River Basin at Alton based on 23-year average 
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Figure 21. Annual soil moisture values during the period of study for June 
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Figure 22. Annual soil moisture values during the period of study for July 
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Figure 23. Annual soil moisture values during the period of study for August 
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Figure 24. Annual soil moisture values during the period of study for May 



www.manaraa.com

MONTH OF MAY 

§ 
o 

o 

«/) 

o 
z: 

o 
CO 

1978 1955 1960 1965 1970 1975 

YEAR 

Figure 25. Annual soil moisture values during the period of study for September 
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In Run '1' and the later runs (2, 4, and 6), different 

water withdrawals have been applied in order to evaluate the ground­

water table fluctuation in the shallow aquifer of the basin. In 

Run '1,' 15.5 ac-ft/month withdrawal is considered. It is estimated 

that this withdrawal is required to meet the floodplain farmstead needs 

only (10% of the total basin). Again, it is emphasized that the with­

drawals given in the second column of Table 27 are total amounts of 

beneficial water use and exclude the withdrawal for irrigation purposes. 

The model computes the amount of water needed for irrigation if a soil 

moisture deficiency exists. The computer program adds the amount of 

water which is required to be pumped from the shallow aquifer. The 

sample printouts from the mathematical model presented on pages 137, 

138 and 139, including the soil moisture graphs, belong to 

Run '0,' where no withdrawal and irrigation water was considered. 

To show the effect of withdrawal and irrigation on the water 

balance, two additional printouts are attached. Figures 26 and 27 

belong to Run '6' where 235 ac-ft/month withdrawal and a 100% irriga­

tion are considered. 

The following figures (28, 29 and 30) present the groundwater 

table fluctuation in the shallow aquifer of the basin. The numbers 

allocated to the curves are the same as those of previous runs. In 

all of these curves, the main assumptions are as follows: 

1. Floodplain covers 10% of the area of the basin. 

2. The remaining 90% of the area of the basin is upland. 
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I N P U T  D A T A  F O R # * # #  F L O Y D  R I V E R  B A S I N  A B O V E  A L T O N  -  S I M U L A T I O N  P E R I O D  1 9 5 6  T O  1 9 7 8  * * $ #  
F R B I  2 3  1 2  3 4 0 1 0 0 1 0 0 0 0 0 1  1 0 0  0 . 0 0  0 . 0 0  0 . 0 0 0  0 . 0 0 0  1 . 0 0 0  O . l O O  0 . 0 6 0  3 0 . 0  2 6 . 0  
F R 8 2  . 1 5 2 6 4 0 *  1 6 9 6 0 .  0 .  3 9 8 6 6 .  4 . 5 0  2 . 0 0  0 . 0 0  0 .  3 0 0 .  0 . 0 1 0  3 0 0 0 .  1 1 4 4 0 0 .  0 .  0 .  
F R B 3  0 .  7 8 3 8 .  1 1 0 0 0 .  
H Y D R A U L I C  V A R I A B L E S  2 0 . 0 0 0 0  0 . 1 4 0 0  0 . 0 0 1 0  0 . 0 3 5 0  0 . 0 0 1 0  1 0 . 0 0 0 0  0 . 1 5 0 0  3 0 . 2 0 0 0  5 2 8 0 .  1 9 . 5 1  
I T E M — Y E A R 1 9 7 0  O C T  N O V  D E C  J A N  F E B  M A R  A P R  M A Y  J U N  J U L  A U G  s r p  
C R O P  G W - R E T U R N  F L O  C O E F  0 . 1 0 0  0 . 2 0 0  0 . 8 0 0  1  .  0 0 0  1 . 0 0 0  0 . 8 0 0  0 . 3 0 0  0 .  1  0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0  . 0 0 0  
S U R F A C E  S U P P L Y  T O  W L  C O E F  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0  .  0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  
P R O P O R T I O N  D A Y L I G H T  H O U R S  0 . 0 7 7 3  0 . 0 6 6 3  0 . 0 6 3 9  0 . 0 6 6 0  0 . 0 6 6 6  0 . 0 6 3 8  0 . 0 8 9 7  0 . 1 0 1 0  0 . 1 0 2 1  0 . 1 0 3 7  0 * 0 9 6 4  0  .  0 8 4 2  
C O A l  - 2 3 . 8 0 0 0 - 2 0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0 - 2 1 . 3 0 0 0 -> 3 0  *  6 6 0 0 - 1 2 . 2 0 0 0 -1 6 . 2 0 0 0 -1 4 . 9 5 0 0 - 1 7 . 0 0 0 0 -1 6 . 6 0 0 0  
C 0 A 2  - 2 3 . 8 0 0 0 - 2 0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0 -2 1 . 3 0 0 0 - 3 0 . 6 6 0 0 - 1 2 . 2 0 0 0 - 1 6 . 2 0 0 0 - 14• 9 5 0 0 -•  1 7 . 0 0 0 0 - 1 6 . 6 0 0 0  
P O B l  6 . 4 4 0 0  5 . 0 1 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  5 . 9 9 0 0  5 . 9 0 0 0  2 . 9 6 0 0  3 . 5 4 0 0  3 . 5 5 0 0  3  . 5 7 0 0  4. 5 1 0 0  
P D B 2  6 . 4 4 0 0  5 . 0 1 0 0  0 «  0 0 0 0  0 . 0 0 0 0  0 * 0 0 0 0  5 * 9 9 0 0  5 . 9 0 0 0  2 * 9 6 0 0  3 . 5 4 0 0  3 . 5 5 0 0  3 . 5 7 0 0  4 , 5 1 0 0  
P O C l  0 . 5 8 7 0  2 * 1 6 0 0  0 .  0 0 0 0  0 . 0 0 0 0  0 * 0 0 0 0  1 . 4 2 5 0  1 * 4 2 5 0  1 * 2 4 0 0  2 . 9 4 0 0  1 . 7 0 0 0  2 . 4 5 0 0  1 * 0 6 0 0  
P 0 C 2  0 . 5 8 7 0  2 . 1 6 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  1 . 4 2 5 0  1 . 4 2 5 0  1 . 2 4 0 0  2 . 9 4 0 0  1 . 7 0 0 0  2 . 4 5 0 0  1 . 0 6 0 0  
P S M l  0 . 0 0 0 0  0 . 0 0 0 0  0 .  0 6 9 0  0 . 0 0 1 0  0 . 0 6 5 0  0 . 3 3 0 0  0 . 1 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  
P S M 2  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 6 9 0  0 . 0 0 1 0  0 . 0 8 5 0  0 , 3 3 0 0  0 * 1 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  
C F A l  0 . 0 0 0 0  0 . 0 0 0 0 1 0 0 , 0 0 0 0 1 0 0 . 0 0 0 0  3 0 * 0 0 0 0  6 0 . 0 0 0 0  0 . 0 0 0 0  0 * 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 * 0 0 0 0  0 . 0 0 0 0  
C F B l  0 . 0 0 0 0  0 . 0 0 0 0  - 0 . 4 5 0 0  - 0 . 4 5 0 0  - 0 . 4 5 0 0  - 0 . 4 5 0 0  —  0 *  4 5 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  
C F A 2  0 . 0 0 0 0  0 . 0 0 0 0  4 0 . 0 0 0 0 1 0 0 . 0 0 0 0  2 0 . 0 0 0 0  8 0 . 0 0 0 0  4 0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  o . o o o o  0 . 0 0 0 0  0 * 0 0 0 0  
C F B 2  0 . 0 0 0 0  0 . 0 0 0 0  - 0 . 8 0 0 0  - 0 . 9 0 0 0  - 0 . 9 0 0 0  - 0 * 8 0 0 0  - 0 . 8 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  
C R A l  0 . 9 0 0 0  0 . 9 5 0 0  1 •  0 0 0 0  1 . 0 0 0 0  1  «  0 0 0 0  1 . 0 0 0 0  1 . 0 0 0 0  0 .  9 0 0 0  0 . 8 8 0 0  0 * 8 5 0 0  0 . 6 5 0 0  0 * 9 0 0 0  
C R A 2  1 . 0 0 0 0  1 . 0 0 0 0  I . 0 0 0 0  1 . 0 0 0 0  1 . 0 0 0 0  1.41 0 0  1 . 9 4 0 0  3 . 8 1 0 0  1 . 0 0 0 0  1  * 0 0 0 0  1 . 0 0 0 0  1 . 0 0 0 0  
C R B l  0 . 9 8 0 0  0 . 7 2 7 0  1 . 0 0 0 0  I . 0 0 0 0  1 * 0 0 0 0  1 . 0 0 0 0  0 . 7 2 1 0  0 . 6 5 0 0  0 . 6 2 2 0  - 0 . 0 7 7 0  0 . 3 2 5 0  0 . 2 2 2 0  
C R B 2  0 . 9 8 0 0  0 . 7 2  7 0  1  . 0 0 0 0  1 • 0 0 0 0  1  * 0 0 0 0  1 . 0 0 0 0  0 . 7 2 1 0  0 . 6 5 0 0  0 . 6 2 2 0  - 0 . 0 7 7 0  0 . 3 2 5 0  0 . 2 2 2 0  
G M C O E  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 * 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  
C R O P  A R E A S  2 2 8 9 6 .  6 5 6 3 5 .  6 4 1 0 9 .  1 5 2 6 4 0 .  

1  G R S S  K  C O E F  0 . 6 3  0 . 5 4  0 . 0 0  0 . 0 0  0 * 0 0  0 . 0 0  0 . 6 8  0 *  7 2  0 . 7 4  0 .  7 4  0 . 7 3  0 . 7 0  
2  C O R N  K  C O E F  0 . 2 5  0 . 1 5  0 . 0 0  0 . 0 0  0 * 0 0  0 * 0 0  0 . 2 9  0 . 3 9  0 . 5 8  0 . 6 4  0 . 5 8  0 . 4 2  
3  S B N S  K  C O E F  0 . 2 6  0 . 1 5  0 . 0 0  0 . 0 0  0 . 0 0  0 .  0 0  0 . 2 7  0 . 3 7  0 . 5 1  0 * 5 7  0 . 5 1  0 . 3 8  

« L P H  A R E A S  3 3 9 .  2 5 4 4 .  7 2 9 3 .  6 7 8 4 .  1 6 9 6 0 .  
1  « T R  K  C O E F  0 . S 4  0 . 3 8  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 7 5  0 .  8 8  0 . 9 4  1  * 0 0  0 . 9 4  0 . 7 5  

2  G R S S  K  C O E F  0 . 5 9  0 . 5 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 6 4  0 . 6 8  0 * 6 9  0 . 6 9  0 * 6 8  0 * 6 5  

3  C O R N  K  C O E F  0 . 2 3  0 . 1 4  0 .  0 0  0 . 0 0  0 . 0 0  0 *  0 0  0 . 2 7  0 . 3 7  0 . 5 4  0 . 6 0  0 . 5 4  0 * 3 9  

4  S B N S  K  C O E F  0 . 2 5  0 . 1 4  
P U M P E D  W A T E R  

0 . 0 0  0 . 0 0  0 . 0 0  0 .  0 0  0 . 2 6  0 . 3 5  0 . 4 8  0 . 5 3  0 . 4 6  0 . 3 5  

1 9 7 0  2 3 5 . 0 0  2 3 5 . 0 0  2 3 5 . 0 0  2 3 5 . 0 0  2 3 5 . 0 0  2 3 5 . 0 0  2 3 5 . 0 0  2 3 5 . 0 0  2 3 5 . 0 0  2 3 5 . 0 0  2 3 5 . 0 0  2 3 5 . 0 0  
I N P U T  P R E C I P I T A T I O N  

1 9 7 0  2 . 0 8  0 . 2 1  1 . 3 2  0 . 2 7  0 * 3 1  2 . 0 3  1 . 7 7  4. 5 3  1 . 6 6  1  .  8 5  0 . 7 3  6 . 1  I  
A V E R A G E  T E M P E R A T U R E  

1 9 7 0  4 5 . 2 0  3 4 . 9 0  
G A G E D  O U T F L O W  

2 0 . 4 0  6 . 8 0  1 2 .  1 0  2 7 . 2 0  4 6 . 6 0  6 1 . 5 0  7 1 . 1 0  7 3 .  8 0  7 1  . 9 0  6 2 . 3 0  

1 9 7 0  3 3 5 . 0 0  3 7 6 . 0 0  2 4 8 .  0 0  2 0 7 . 0 0  7 6 9 . 0 0 1 0 3 0 0 . 0 0  6 2 1 0 . 0 0  3 9 7 0 . 0 0  2 0 7 0 . 0 0  3 9 3 . 0 0  1 3 9 . 0 0  5 0 1  . 0 0  
G W  O U T F L O W  

1  9 7 0  0 . 0 0  0 * 0 0  0 .  0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  0 . 0 0  

1 Z G W  ZS Z R I V  D E L H  Q G *  GH O I R R  
1 2 2 . 1  9  1.15 3 1 . 3 5  -0.35713E-02 -588.67 0  . 0 0  0 . 0 0  
2  2 2 . 0 9  0.05 3 0 . 2  5  -0.30987E-02 9 . 1  8  0 . 0 0  0 . 0 0  
3  2 1  . 8 3  0 . 4 6  3 0 . 6 6  - 0 . 3 2 9 1 6 E - 0 2  432.84 0 . 0 0  0 . 00 
4  2 1 . 7 4  0 . 0 1  3 0 . 2  1  - 0 . 3 2 2 0 4 6 - 0 2  0 . 3 6  0 , 0 0  0.00 
S  21 . 5 5  0.33 3 0 . 5 3  - 0 . 3 3 7 8 6 E - 0 2  2 5 2 . 6  1  0.00 0.00 
6  2 1  . 7 5  2.31 3 2 . 5 1  - 0 . 4 2 0 4 6 E - 0 2  -765.27 0 . 0 0  0.00 
7  2 2 . 0 0  3 .  1  1  3 3 . 3 1  - 0 . 4 4 3 0 7 E - 0 2  - 8 5 9 . 0 1  0.00 0.00 
8  22.50 1 . 7 6  3 1  . 9 6  - 0 . 3 6 9 3 0 E - 0 2  - 6 4 2 * 2 2  0.00 900.52 
9  2 2 . 2 5  0 . 4 3  3 0 . 6 3  - 0 . 3 1 2 6 4 6 - 0 2  3 9 6 * 3 2  0.00 0.00 

1 0  2 0 . 9 2  0 . 5 6  3 0 . 7 6  - 0 . 3 8 2 8 6 E - 0 2  - 5 9 7 . 5 7  0.00 3749.94 
%  1  1 9 . 1 3  0.04 3 0 . 2 %  - 0 . 4 2 2 2 4 E - 0 2  6 . 6 2  0.00 4 3 2 0 . 6 3  
1 2  19.22 0. 29 30.49 -0.4256IE-02 200.91 0. 00 

6 . 3 5  I N C H E S  

Figure 26. Input data and G.W. table calculations (Run '6') 
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FLOYD RIVER OASIN ABOVE ALTON SIMULATION PERIOD 1956 TO I 978 
ITEM—YEAR1970 OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP YEAR 
MEASURED INFLOW 0 • 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
UUWCASUREO INFLOW 0. 0. 0. 0. 0* 0, 0. 0. 0. 0. 0. 0. 0. 

PUMPED WATER 235. 235. 235. 235. 235. 235. 235. 235. 235. 235. 235. 235. 2820. 
TOTAL MANAGEABLE WATER 235. 235. 235. 235. 235, 235. 235. 235. 235. 235. 235. 235. 0. 
GROUNDWATER INFLOW 0. 0. 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
CROPLAND DIVERSIONS 0. 0 • 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
AMOUNT TO ROOT ZONE 0 . 0 • 0. 0. 0, 0. 0. 0. 0. 0. 0. 0 . 0. 
CROPLAND RETURN FLOW 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

RUNOFF FROM UPLANDS 1815. 8. 390. 0. 227. 581 5. 9558. 3703. 357. 543. 6. 18 I . 22604. 
SURFACE RETURN FLOW 0. 0 . 0 • 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
GW RETURN FLOW 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 

CROPLAND PRECIPITATION 23812. 2538. 16790. 3434. 3943. 25822. 22514, 51859. 20820. 20002. 7893. 69947. 269375. 
SNOW STORAGE AOOSO 0. 0. 5256. -491 1 . 2102. 9358. -I 1806. 0. 0. 0. 0. 0. 0, 
ACCUM SNOW STORAGE 0. 0. 0. 5256. 345. 244 7. 11806. 0. 0. 0. 0. 0. 0. 

DETENTION ON CROPS 0 . 0. 1874. 1955. 508. 2247. 0. 0. 0. 0. 0. 10994. 
SUBLIMATION FROM CROPS 0. • 0. 9270. 6390. 1 105. 6239. 0. 0. 0. 0. 0. 0. 23005, 
SNOW MELT 0 . 0. 390. 0. 227. 5815. 9558. 0. 0. 0. 0. 0, 15990. 
ROOT ZONE SUPPLY 21997. 2 529 . 1874. I 955. 508. 4409. 24 762. 48156. 20463. 19459. 7887. 69766. 223766. 
CROPLAND P.C.U. I 3831. 6137. 0. 0. 0. 0. 18161. 34061. 53058, 60900. 50527. 29706. 266380, 
RZ SUPPLY-P.C.U. 8166, -3607. 1874. 1955. 508. 4409. 6601. 14095. -32594. -4 144 1. -42640. 40061, -42613, 

ACCUM SOIL MOISTURE I- 39886* 48052# 44445. 46319. 46274, 40792. 53192. 59793. 73888. 41294. 0. 0. 40061. 
CONS. USE DEFICIT 0. 0. 0. 0. 0. 0. 0. 0. 0. -148. -42640, 0. -42788, 

ACTUAL CROPLAND C.U. 13831. 6137. 0. 0« 0. 0. 18161. 34061, 53058, 60752, 7887. 29706. 223592. 
INTERFLOW ADDED 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0. 0. 0. 

ACCUM INTERFLOW 1- 0. 0. 0. 0. 0. 0, 0. 0. 0. 0. 0, 0. 0. 
OETENTION ON WETLAND 0  .  0. 208. 2 1  7. 56. 490. 250. 0. 0. 0. 0, 0, 1222. 
SUBLIMATION FROM WETLAND 0 . 0. 1030. 710. 123, 693. 0. 0 . 0. 0. 0, 0. 2556. 
GROUNDWATER ADDITION 0. 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0, 
GROUNDWATER TO SURFACE -S89. 9 . 433. 0. 253. -765. -859. -642. 396. -598. 7, 201 , -2154, 

DOMESTIC USE 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
IRRIGATION FOR WTLCROPS 0. 0 . 0. 0 . 0. 0. 0. 90 1 , 0. 3750, 4321 , 0, 8971 , 
EXPORTS 0. 0. 0. 0. 0. 0. 0 . 0 . 0 . 0. 0 . 0. 0. 
SURFACE SUPPLY TO WL 0 . 0 . 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

WETLAND PRECIPITATION 2646. 2 8 2 *  1666. 382. 438, 2869. 2502, 5762. 231 3, 2222. 877. 7772, 29931. 
RUNOFF FROM FLOOOPLAINS 202. 1 . 43. 0. 25. 646. I 062. 411. 40. 60 . 1 « 20. 25 12. 
SNOW STORAGE ADDED 0. 0. 584. — 546. 234. 1040, -1312. 0. 0. 0. 0. 0. 0. 
ACCUM SNOW STORAGE 0 . 0. 0. 584 . 38. 272. 13 12. 0 . 0. 0 . 0. 0. 0. 

SNOW MELT 0. 0 . 43. 0. 25. 6 4 6. 1 062. 0 . 0. 0. 0. 0. 1 777, 
TOTAL SUPPLY TO WL 24*4. 281 . 208. 217. 56, 490. 2751. 6251 . 2274, 591 2. 51 97. 7752. 33834. 
POTENTIAL WETLAND CU 1473. 650. 0. 0. 0. 0. T 964 . 3676. 5607. 641 9. 5339. 31 15. 28243. 
TSWL-WL P.C.U. 972. -369. 208. 217. 56. 490. 787. 2575. -3333. -507. -142. 4637. 5591 . 

ACCUM WL SOIL MOIST I- 7838. 981 0. 8441 . 8649. 8866. 8923. 9413. 10200. 1 1 000. 766 7. 7159. 7018. 11000. 
WETLANO DEFICIT 0. 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 

ACTUAL WETLAND C.U. 1473. 650. 0. 0. 0. 0. I 964. 3676. 560 7, 641 9. 5339. 3115. 28243. 
WL ADD TO SRFC AND GW 0. 0 . 0. 0. 0. 0. 0. I 775. 0. 0. 0. 654. 2429. 
SURFACE WTR IN CHANNEL 1663. 253. 110 1. 236. 740, 5931 . 9996. 3707. 1 028. 24 1 . 249, 637, 25781. 

TOTAL OUTFLOW 1428. 18. 066. 1 . 505. 5696. 9761 . 5247. 703. 6 . 1 J. I 056. 25390. 
GW OUTFLOW 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 . 0. 

SURFACE OUTFLOW 1 428. 18. 866 . 1 • 505. 5696 . 9761 . 3472. 793. 6. 1 3. 402. 22961. 
GAGED OUTFLOW 335. 376. 248. 207. 769. 10300. 6210. 3970. 2070. 393. 139. 581 . 25598. 
DIFFERENCE XCOMP-GAGED 1093. -358. 618. -206. -264. -4604. 355 I . -499. -1277. -387. -126. - 1 79. -2637. 

Figure 27. Mass balance calculations for different processes (Run '6') 
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3. The initial groundwater table elevation (ZINT) is assumed 

to be 30 ft above the datum. 

4. The adopted variables and coefficients are the same as shown 

in the printouts of Figures 15 and 16. (The printouts show 

the first two assumptions, too.) 

5. The basic values and assumptions for the model are 

shown in Table 28. 

Improving Several Important Variables 

Table 28 gives an appropriate list of dominant variables in the 

model. Not every possible test of changing variables is expected 

from this study. However, an awareness about (1) the important variables 

and (2) several appropriate tests with regard to the effect of dominant 

variables is advisable. 

This section discusses these types of tests and the responses 

of the model with regard to the changes of some variables. 

The first set of testing was based on the assumptions which were 

considered in the model calibration. As in any other mathematical 

models, the prime concern was the goodness of fit and less attention 

was paid to physical justification. However, this latter purpose must 

be kept in mind. 

Although the results presented are quite justified physically, 

as far as the mathematical modeling is concerned, another set of testing 

was carried out to diminish the range of uncertainties and strengthen 

the physical aspects of several assumptions. The comparison between 
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Table 28. Basic actual values and assumptions for the hydromodel of 
the Floyd River Basin at Alton, northwest lowa^ 

Item Amount 

Total area of the basin 169,600 acres 

Area of upland (90% of total) 152,640 acres 

Area of floodplain (10% of total) 16,960 acres 

Number of years in record 23 years 

Number of periods in each year 12 months 

Number of crops in upland (15% grass, 43% corn, 
42% soybeans) 3 

Number of crops in floodplain (including water 
area) (15% grass, 43% corn, 40% soybeans, 
2% water area) 4 

Root zone depth 4.5 ft 

Porosity of alluvium 15% 

Hydraulic conductivity of alluvial aquifer 1500 gpd/ft^ 

Average width of river 50 ft 

Depth of river channel 10 ft 

Effective length of the river 10 miles 

Average width of floodplain 1 mile 

Average slope of the river 5 ft/mile 

Mannings "n" for stream channel 0.035 

Elevation of stream bottom from datum 30.2 ft 

Initial elevation of G.W. table from datum 30 ft 

G.W. movement One-dimensional 

^In the case of irrigation the floodplain crops are irrigated 
totally, in the hydromodel program. 
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Table 29. Conditions imposed for second set of testing 
is also listed for comparison 

Run '0' 

Run No. % . of F.P. 

Effective length 
of river in the 
basin (mile) 

(ALRV) 

Effective width 
of F.P. (mile) 

(Vw) 

Initial G.W. 
table elevation 
feet (ZINT) 

0 10 10 1.0 30 

7 10 20 1.3 30 

8 5 10 1.3 30 

9 5 20 0.65 30 

10 10 20 1.3 28 

11 10 20 1.3 31 

^Runs '7' through '11' do not consider any water withdrawal and 
irrigation requirements. Therefore, the related columns as appeared 
in Table 27 have been eliminated in this table. 

the results of this set and those of the first set reveals the calibra­

tion assumptions have not been too far from physical meaningful as­

sumptions, and the results (output) of the model remain almost 

the same. The second set of tests offers a broader range of options 

for model application in the future when a better field measurement 

of the variables may be available. Table 29 shows the major changes in 

dominant variables. Since the model is responsive to the imposed 

conditions, these changes made some differences in the mass balance, 

and in the range of model accuracy, it shifts the groundwater table 

elevations up and down proportionally. Table 30 gives the resultant 

effect of these changes on groundwater table fluctuations. 
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Table 30. G.W. table elevations in feet 
compared to those of Run '0' 

for second 
of the first 

set of testing 
set of testing^ 

Run 
Year "0" lîyii "8" tigll "10" "11" 

1956 30.21 30.31 30.31 30.75 28.69 30.96 

57 30.43 30.61 30.61 31.14 29.43 31.03 

58 30.54 30.70 30.70 30.89 29.89 30.97 

59 30.70 30.89 30.89 31.15 30.32 31.06 

1960 32.08 32.02 31.20 31.80 31.67 32.12 

61 32.48 32.30 31.44 31.79 32.08 32.36 

63 32.03 31.79 31.45 31.06 31.70 31.81 

64 31.77 31.51 31.30 31.11 31.46 31.53 

65 32.76 32.40 31.72 32.26 32.37 32.41 

66 32.39 32.01 31.57 31.37 31.99 32.01 

67 32.02 31.62 31.33 30.99 31.60 31.62 

68 31.64 31.22 31.04 30.59 31.22 31.23 

69 32.04 31.87 31,58 32.23 31.87 31.87 

1970 31.80 31.61 31.42 31.25 31.61 31.61 

71 32.06 31.90 31.54 31.74 31.89 31.90 

72 32.62 32.30 31.43 31.34 32.30 32.30 

73 32.85 32.48 31.53 31.65 32.48 32.48 

74 33.31 32.74 31.39 31.26 32.74 32.74 

75 33.57 33.00 31.62 32.04 33.00 33.00 

^No withdrawals and irrigation water requirements are considered 
in the runs appearing in this table. 
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Table 30. Continued 

Run 
Year "0" "7" "8" "9" "10" "11" 

76 33,05 32.48 31.61 (No 32.48 32.48 

77 32.52 31.93 31.39 print 31.93 31.93 

78 33.11 32.52 31.33 out) 32.51 32.52 

Much more explanation and interpretation are needed, rather than 

just presenting the figures and tables for this chapter, to describe 

the responses of the model with regard to groundwater fluctuations. 

Since the research study covers different aspects of the hydrological 

system in the basin, including the deterministic and stochastic events 

and hydrogeological conditions, a specific chapter (Chapter VII) 

will be used to present a discussion where all necessary information are 

provided at the beginning. However, some additional information is 

needed to document the results of this chapter. With reference to 

Table 28, the following temporary conclusions resulted from the tests 

conducted in this chapter. 

The shallow groundwater table fluctuations, under the imposition 

of the given conditions (Tables 27 and 29) as shown in Figures 21, 22 

and 23 and presented in Table 30, respectively, illustrate a depletion 

of the groundwater table, but the water table is restored quickly to a 

new stable level. As a result, the shallow aquifer groundwater levels 

are recovered under the assigned withdrawals (Table 27) and with 

some gain in level in the case of no withdrawals (Table 30). Therefore, 
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the withdrawal of the beneficial water use projected in Chapter IV, 

including 100% irrigation of the floodplain, will not result in exces­

sive or permanent depletion of the groundwater in the shallow aquifer 

of the basin. However, a conservative schedule for greater with­

drawals may be needed. 

The next chapter provides more information and results for extreme 

cases of drought occurrence and resultant shallow aquifer groundwater 

table fluctuations. 
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CHAPTER VI- STOCHASTIC STUDIES 

So far, all explanations about the nature, development, calibration 

and testing of the hydromodel were based on the deterministic as­

sumptions. Since a model is expected to be used for prediction pur­

poses, one may argue that we should also be able to use a specified model 

for stochastic predictions. Using a deterministic model for prediction 

does not necessarily mean the prediction is a stochastic one. However, 

it is possible to design the model with enough parametric flexibility 

to permit it to be used also for stochastic predictions. In addition 

to flexibility of the model, some studies about the probabilistic 

(stochastic) laws of the events are required. The additional studies 

needed to accomplish this purpose have been considered In this research 

study and the probabilistic laws for the dominant hydrological event 

(precipitation) were conducted. 

Based on the definitions selected for dryness and wetness through­

out a drought cycle in this study, a characteristic drought period was 

sought. It is emphasized that the drought period (dry, normal, and wet 

years within the drought cycle) depends on arbitrary precipitation 

limits that must be evaluated with regard to the type of the use to be 

made of the data. In this study, emphasis was placed on the effect of 

the drought cycle on the groundwater fluctuations, rather than the drop 

in yield, for example. Although a 5- to 7-year drought period seems 

reasonable for this purpose, from restricted meteorological observa­

tions, it is believed that the overall drought cycle in this area has 

a return period of 20 to 22 years. Table 3, presented in Chapter III, 
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gives the relative probabilities for moving through the sequential 

events of the precipitation. This table may be used in many dif­

ferent ways for stochastic uses, particularly for simulation study. 

It enables the analysts to simulate hydrological records (rainfall 

records) for the area for as many time periods as needed. According 

to experience, some particular paths might be useful in conducting the 

stochastical studies in the area. Figure 31 shows the sample 

paths. Of these, two were chosen and extended to accomplish the ob­

jectives of the study. Table 31 represents the relative joint probabili­

ties for each path of Figure 31. Based on Figure 31 and Table 31, two 

8-year paths were adopted and extended. The single-lined path on 

Figure 32 depicts the "worst" sequential events, whereas the double-

lined path shows the "most probable" sequence of events. The "worst" 

sequential events were established on the basis of both experience 

and high probability of the outcome of the event. To simulate ap­

propriate numerical values for the events described by these paths for 

the basin under study (Floyd River Basin at Alton), the statistical 

parameters of the annual precipitation (the mean and the standard devia­

tion) of the total 23-year period of record for the basin were used. 

Table 32 represents the simulated numerical depth of precipitation for 

establishing an 8-year drought period. Since the temperature does not 

have the tremendous effect compared to that of precipitation, the 

numerical values of temperature were considered to be the same as 

those of the 8-year period of 1971-1978. The numerical values of 

gaged flow in this study are used only for comparison, and do not 

enter into the total water balance comparisons. Therefore, they 
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Table 31. Appropriate paths for sequential events and their joint 
probabilities 

Joint 
Sequential events probability 

W DD DD W 0.001486 
w" DD DD 0.003333 
W" DD DD N 0.003184 

w 

W D DD W 0.004518 
D DD W 0.010136 
D DD N 0.009684 

w 

W D D W 0.012982 ,w 
W D D W 0.015726 
ïj" 
w 
W* D D N 0.025021 

W DD DD W 0.001736 
W DD DD W" 0.003895 
W DD DD N 0.003721 

W D DD W 0.003035 
W D DD w" 0.006810 
W D DD N 0.006506 

W D D W 0.008722 
W D D W* 0.010565 
W D D N 0.01609 

N DD DD W 0.001127 
N DD DD 0.002529 
N DD DD N 0.002416 

N D DD W 0.002860 
N D DD 0.006416 
N D DD N 0.006129 

N D D W 0.008217 
N D D w" 0.009953 
N D D N 0.015836 
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fluctuations 
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Table 32. Simulated numerical values of precipitation depth for stochastic 
events (in.) 

Type of 
events Depth, inches. for designated category 
Month WW W N D DD 

Oct. 2.93 1.99 1.76 1.58 0.93 

Nov, 1.79 1.21 1.08 0,96 0.57 

Dec. 1.39 0.93 0.83 0.73 0.44 

Jan. 0.81 0.54 0.48 0.42 0.25 

Feb. 1.40 0.94 0.84 0.74 0.44 

Mar. 2.58 1.74 1.55 1.37 0.83 

Apr. 3.51 2.36 2.11 1.87 1.11 

May 5.84 3.93 3.51 3.11 1.85 

June 6.14 4.13 3.69 3.27 1.94 

July 5.60 3.77 3.37 2.98 1.78 

Aug. 6.10 4.11 3.67 3.25 1.93 

Sept. 4.89 3.29 2.94 2.60 1.55 

Total 
annual 42.98 28.94 25.85 22.88 13.62 

Note; The averaged lowest and averaged highest observed values during 
the 23-year period were_chosen for the calculation of DD and WW 
events, respectively. X = 25.85; S = 4.60. 
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could be set equal to zero for this test. But as a set of random 

numerical values, those streamflows from the period of 1971-1978 have 

also been used. Other parameters were kept the same as those used for 

calibration and testing of the hydromodel. The amount of water with­

drawals projected for the years 1980 and 2020 (175 ac-ft/month and 

235 ac-ft/month, respectively) were also entered into the input data, 

in their proper place and sense to evaluate the effect of the sequential 

events for the current (155 ac-ft/month withdrawal) or prospective 

future withdrawals (175 and 235 ac-ft/month). Along with the many 

withdrawal implications, the additional withdrawal for irrigation 

purposes was considered. Table 33 represents the condition imposed 

for stochastic evaluations. Figures 33 and 34 depict the effect of 

the most probable and worst sequential events on groundwater table 

fluctuations of the shallow aquifer, respectively. Table 34 repre­

sents the amount of groundwater decline under the imposed effect of the 

selected stochastic events. 

Chapter VII includes a general discussion of the effects of 

stochastic events on the responses of the model. The specific conclu­

sions from this chapter can be viewed in Figures 33 and 34 and Table 

34. Due to the nature of the mathematical models, some responses are 

expected for every condition imposed. The results must be interpreted 

in light of model limitations. For example, declines in water table 

of the shallow aquifer may exceed the depth of the aquifer. This is not 

physically meaningful since the total depth of the shallow aquifer might be 
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Table 33. Conditions imposed for stochastical program runs 

% of irrigation 
Amount of including the 
withdrawal appropriate 

Type of excluding the withdrawal that 
Run sequential irrigation computer program Prospect 
No. events ac-ft/month calculates time 

12 Highest probability 0 0 Current 
drought case 

13 Highest probability 175 100 Prospect of 
drought case year 1980 

14 Highest probability 235 100 Prospect of 
drought case year 2020 

15 Most severe drought 0 0 Current 
case 

16 Most severe drought 235 100 Prospect of 
case year 2020 

assumed to be less. These runs point out that during very severe 

droughts, temporary depletion of the shallow groundwater system is 

possible. However, the results show that the depletion is not severe, 

and recovery takes place as precipitation returns to normal or to 

"wet" conditions. 
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Table 34. Amount of decline in shallow aquifer G.W. table during 
eight years of stochastic test (ft) 

Run No. 13 Run No. 14 Run No. 16 
175 ac-ft/mo 235 ac-ft/mo 235 ac-ft/mo 
withdrawal and withdrawal and withdrawal and 

Year 100% irrigation 100% irrigation 100% irrigation 

1 2.10 2,66 3.90 

2 2.79 3.56 4.84 

3 3.60 4.69 9.55 

4 3.68 4.99 10.49 

5 4.59 5.91 14.79 

6 6.15 7.54 18.38 

7 5.03 6.44 18.62 

8 4.49 6.07 16.61 
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CHAPTER VII. DICUSSION, CONCLUSIONS AND RECOMMENDATIONS 

Discussion 

Many fundamental concepts, delineation of the physical processes, 

development of the model and its calibration, testing and verification 

were discussed in previous chapters. However, it is advisable to sum­

marize the results of the previous chapters to aid the reader. Some 

substantial questions may arise from the sections of this report which 

describe the modeling concepts. In particular, the mathematical func­

tions and their linkages must be fully understood if the computer program 

is to be used correctly. The elements and functions of the model and 

their interactions have been checked carefully and the trade-off between 

the processes is logical and correct, even though intermediate calcula­

tions or results do not appear in printouts but are kept in the computer 

memory. To assist those individuals who cannot spend more time to study 

the computer algorithms of this hydromodel, Table 28 in Chapter V 

provides the basic assumptions made or developed by trial and error 

and used for final verification of the model. It is neither simple nor 

practical to present all information of this type in a single table 

to represent the entire computer program. But Table 28 was presented 

to add details from the computer program and introduced the scope of 

the model. The values given in this table belong to Run '0' which 

has served as the basis for testing, verification and comparisons. As 

described in Chapters V and VI, some of these values were changed in 

later phases to widen the validity of the model and increase its ef­

fectiveness to predict. 
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Due to the acute responsiveness of the model, a change in hydro-

meteorological input data or relevant coefficients will affect the 

output of the model. This is to be expected in a natural system. Any 

other changes in the values of parameters included in Table 28 will 

lead to a distinct change in the mass water balance results. All 

possible consequences from changing the parametric variables were not 

expected to be researched in this study. However, 16 different and 

important changes have been recorded, in addition to the basic assump­

tions (Run '0'), which were represented in Chapters V and VI in the form 

of graphs and tables. These graphs and tables provide results for one 

of the main objectives of the study, i.e., the type of groundwater table 

fluctuations in the shallow alluvial aquifer. 

There is not enough verified physiographic, hydraulic and hydrologie 

information available for the area to compare the assumed values with 

them, and verify precisely their validity. However, the assumed values 

(based on available studies in the area) led to reasonable results for 

the model which comply with the streamflow experience. Therefore, the 

assumptions made are believed to be satisfactory, and hydrologically 

acceptable to represent the actual conditions of the basin. 

In the following pages, in the Conclusions and Recommendations, 

the results and implications of the Floyd River Basin hydromodel 

are summarized in terms of accomplishments and potential future 

applications. 
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Conclusions 

As discussed earlier in this chapter, the hydromodel is controlled 

by the assumptions and the input data. The conceptualized hydrologie 

processes such as sublimation and detention are expressed in terms of 

exponential relationships, and the surface runoff (SRO) model in terms of 

nonlinear expressions appears to operate properly. Other models 

used for évapotranspiration, soil moisture computation and groundwater 

transition perform adequately as fitted into the structure of the hydro-

model. It is a reality that in a complex hydrologie system, such as the 

one used in this study, a monthly model cannot be expected to be as adequate 

in prediction as those using shorter periods of time, say weekly or 

daily, or even hourly. Also, the relationship between observed 

rainfall and surface runoff values does not always predict accurately. 

But for a hydromodel developed on the basis of monthly water balances, as 

in this model, the primary response for the desired variables is ac­

ceptable. 

The degree of responsiveness of the model can well be viewed from 

figures and tables of Chapters V and VI. These figures and tables re­

veal that the model is responsive and has a degree of sensitivity with 

regard to the indicated parametric changes. One of the most important 

factors affecting the model in a predictive mode is irrigation water 

need. This is, of course, a future concern of the farmers in the area. 

The computer algorithm of the hydromodel calculates the amount of water 

required for irrigation and then is withdrawn from the shallow aquifer. 

Since the total amount of water withdrawn includes the irrigation water 
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implicitly through the mathematical computations, all water withdrawn 

is lumped in one input value. Figures and tables presented in 

Chapters V and VI do not show the actual amount of water used for ir­

rigation, So, it is necessary to present the required irrigation 

water separately. 

Those values introduced as input data for beneficial water use 

(155, 175, and 235 ac-ft/mo) exclude the irrigation water, but the 

final withdrawals considered by the computer include the beneficial 

and irrigation water uses as a total. Table 35 contains a sample 

of irrigation water demands as calculated by the computer program of 

the model. 

The results in this table belong to Run '6,' where the maximum 

projected withdrawal is 235 ac-ft/mo (prospect of year 2020), excluding 

irrigation water. The required irrigation water demand will be 

added to this amount by the model to calculate the total withdrawal. 

This particular run was selected in order to illustrate a conserva­

tive situation. Of course, for less withdrawal and less acreage under 

irrigation (50%, for example), less decrease in the groundwater table 

is expected. 

The computer program computes the irrigation requirement in terms 

of soil moisture content, i.e., in the crop season whenever the soil 

moisture falls below 90% of the saturation value, the necessary amount 

of irrigation water will be withdrawn and applied to the land surface. 

The effect of this water addition to the soil on the following months 

is also considered. The computer algorithm also considers appropriate 

overall irrigation efficiency (80%). Figure 35 shows the effect of total 
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1956 

57 

58 

59 

1960 

61 

6 2  

63 

64 

65 

66 

67 

68 

35. Monthly and seasonal irrigation water needed for 100% of floodplain irrigation of dif­
ferent crops. Results of Run '6,' where 235 ac-ft/mo regional rural withdrawal in 
addition to irrigation water is considered 

Months Total irrigation Groundwater 
May June July Aug. season use table elev. 

(ac-ft/mo) (ac-ft/mo) (ac-ft/mo) (ac-ft/mo) (total depth in in.) (ft) 

7932 2633 956 8.19 25.15 

1049 - — 3392 3.14 24.15 

- 2541 1016 2703 4.43 24.29 

7795 — 1323 6454 11.02 21.97 

— - 2634 4475 5.03 26.94 

— - 2013 3228 3.71 25.95 

— — 1087 45 0.80 26.88 

1591 1816 2428 526 4.50 23.99 

- 27 1701 347 1.47 25.68 

— - 2084 4457 4.63 26.57 

- 994 1154 4628 4.79 23.59 

— 419 - 6108 4.62 21.42 

1023 — 2804 1108 3.49 19.51 
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Table 35, Continued 

Months Total irrigation Groundwater 
May June July Aug. season use table elev. 

Years (ac-ft/mo) (ac-ft/mo) (ac-ft/mo) (ac-ft/mo) (total depth in in.) (ft) 

69 696 — 1572 536 1.98 22.05 

1970 901 - 3750 4321 6.35 19.22 

71 89 470 — 3337 2.67 20.88 

72 — - 3184 — 2.25 23.32 

73 124 340 2227 776 2,45 25,36 

74 - — 1728 5886 5.39 25.27 

75 - 1228 — 6755 5.65 25.48 

76 — 1040 2505 4150 5,44 23.57 

77 - — 2410 - 1.71 23.93 

78 — 1179 3082 — 3,62 26,39 
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withdrawal on the streamflow for a normal condition (155 ac-ft/mo 

withdrawal and 100% irrigation) . To show the high effect of drought 

on the irrigation water requirements. Table 36 includes the amount of 

water required for the cases that stochastic sequential events may 

demand. These sequential events are the same as those discussed in the 

stochastic analyses section. The monthly effect of the maximum 

withdrawal (235 ac-ft/mo and 100% irrigation) on the groundwater table 

of the shallow aquifer is shown in Figure 36. This figure shows the 

monthly variation of the groundwater table during the year of maximum 

drawdown (year 1970 depicted on Figure 30 of Chapter V which belongs to 

Run '6' ) . 

The overall average of soil moisture deficiency without water with­

drawal and irrigation through the 23-year period (potential consumptive 

use-actual consumptive use) was found to be 1.14 in. per year. That 

is, the average 23-year potential consumptive use (neglecting inter­

ception and sublimation) calculated by the model was 20.53 in. per year 

which is 1.14 in. more than the available average 23-year value for 

this process. 

The study revealed that the total normal requirement for beneficial 

water use (including irrigation water) can be safely withdrawn 

from the shallow aquifer without unduly stressing the groundwater 

aquifer. Although an initial drop of about 2 ft results from the 

total withdrawal in a normal season, the sharp drops of groundwater 

table in the shallow aquifer (about a 10-ft drop) during drought 

periods will be replenished in the following wet periods. But as 

Figures 33 and 34 and Table 34 of Chapter VI indicate, in the case of 
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Table 36. The effect of stochastic events on irrigation water require­
ments 

Most probable events^ 
Run '13' 

Worst sequential events^ 
Run '16' 

Year 

Total irri. 
season use^, 
in in. 

Drop of 
groundwater 
table in ft 

Total irri. 
season use^, 
in in. 

Drop of 
groundwater 
table in ft 

1 2.19 2.10 2.72 3.90 

2 3.10 2.79 3.05 4.84 

3 3.32 3.60 6.55 9.55 

4 2.91 3.68 3.00 10.49 

5 3.44 4.59 6.61 14.79 

6 3.52 6.15 4.25 18.38 

7 2.36 5.03 2.92 18.62 

8 2.80 4.49 2.20 16.61 

^or definitions of "most probable events" and "worst sequential 
events," see Chapter VI and Figures 34 and 35. 

^175 ac-ft/mo withdrawal and 50% irrigation are associating 
with the most probable events. 235 ac-ft/mo withdrawal and 100% 
irrigation are associating with the worst sequential events, 

continued repeating of drought periods, a greater drop in the 

groundwater table might be expected. A survey of the depth of the 

alluvial depositions in the basin is needed to find how much drop is 

actually permissible. In this study the depth of alluvium in the basin 

is assumed to be 30 ft (82). Therefore, if this assumption is true, 

in the case of events like those of stochastic sequences, some temporary 

depletion of the shallow aquifer water may be expected in the most 

severe drought periods, however small the probability might be. 
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The following list of recommendations will lead to a better 

understanding and utilization of the shallow aquifer groundwaters of 

the basin in Northwest Iowa. 

Recommendations 

1. A more detailed study of hydrogeological characteristics would 

provide a better and more actual description of the surficial ground­

water resources in these basins having shallow aquifers. 

2. The area of floodplain surrounding the water courses, assumed 

to have a level relief in this study, may undulate. There­

fore, a topographical survey would help to locate the actual floodplain, 

and the shallow aquifer groundwater orientation would be better de­

fined. 

3. As Figure 35 shows, under normal conditions (155 ac-ft/mo 

withdrawal and 100% irrigation, outcome of Run '3'), groundwater ex­

traction from the shallow aquifer does not seriously affect the surface 

runoff based on the estimated floodplain area. It means that the re­

plenishment of the groundwater by streamflow, if the well is located a 

few hundred feet from the water course, has not been accounted for. 

Therefore, more water transfer from river to the shallow aquifer 

can be expected if wells are located near the rivers. So, the loca­

tion of the wells should be viewed carefully. The Iowa Natural Re­

sources Council, to prevent undue impact on low streamflow, requires 

wells to be located away from the stream banks at least 1/8 to 1/4 

mile. 
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4. Due to the nature of alluvial aquifers (unconfined aquifers), 

the spacing of the wells and the amount of withdrawals should be 

carefully considered in order to avoid undue stress and rapid or 

complete exhaustion of the groundwater resource. 

5. Since the floodplain is used for transportation, water 

pollution control plants, and has a higher rate of farming activities 

in terms of crop acreage, shallow aquifers are more exposed to pol­

lution, and the point and nonpoint sources of pollution should be considered 

in locating wells. For drinking water purposes, wells should be 

sealed effectively. 

6. The economics of groundwater extraction should be compared 

with that of direct streamflow diversion or river withdrawal, as far 

as the surface water resource can be utilized. So, it is recommended 

that the groundwater reserve in the shallow aquifer be used for the 

most productive purposes, 

7. Finally, a trade-off between technical needs, economic 

water use, and sociological and institutional factors will permit 

full development of the area to maximize the profits attributed to 

the beneficial water use of the basin. 
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APPENDIX A. 

A LIST OF DEFINITIONS FOR SOME IMPORTANT MATHEMATICAL PROGRAMMENGS 

MATHEMATICAL PROGRAMMING: A mathematical technique by which a numerical 
function of one or more variables constraining in some way is 
optimized. 

LINEAR PROGRAMMING: A mathematical technique by which a linear function 
of one or more variables is optimized while the solution must 
satisfy one or more constraints placed on the variables. 

DYNAMIC PROGRAMMING: A mathematical technique by which a multi­
stage process is optimized within the principle of optimality. 

INTEGER PROGRAMMING: A mathematical technique by which a linear pro­
gramming problem is solved with additional restriction of the 
decision variables which must have integer values through the 
procedure of solution. 

Note: Integer programming may be used for nonlinear cases also, 
but in this case it becomes a particular type of dynamic 
programming. 

NONLINEAR PROGRAMMING: A mathematical technique by which a nonlinear 
function of one or more variables is optimized subject to satis­
faction of one or more nonlinear constraints bounding the variables. 
Indeed, the nonlinear programming is the same technique as that of 
linear programming, with the difference that the technique should 
consider the concept of "local" and "global" optima and continue 
the procedure to the point that the global optima is reached. 

Note: Sometimes is is possible to convert a nonlinear programming 
problem into a linear programming problem, but it often is 
necessary to deal directly with the nonlinear cases. 

QUADRATIC PROGRAMMING: A mathematical technique by which a quadratic 
objective function is optimized subject to the linear inequality 
constraints and the nonnegative variables of the problem. 

RECURSIVE PROGRAMMING: A mathematical technique by which a dynamic 
programming whose parameters are changing over time is solved. 
Therefore, the time itself is a discrete variable. It may deal 
with linear or nonlinear cases. 

GOAL PROGRAMMING: A mathematical technique by which a system of complex 
objectives (rather than one objective) along with single or 
multiple goals with multiple subgoals have nonhomogeneous units 
is simultaneously solved. It is a modified and extended type of 
linear programming. 
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STOCHASTIC PROGRAMMING: A mathematical technique by which an optimiza­
tion problem with random variables (rather than the constant ones) 
is solved. Depending on known or unknown probability distribution 
of the random variables, the problem may involve risk or uncer­
tainty, respectively. 
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APPENDIX B. 

SAS COMPUTER PROGRAM AND ANNUAL TRANSITION 

MATRICES OUTPUTS FOR AREA UNDER STUDY 
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THE JOB C2 15A8 HAS BEEN RUN UNDEK RELEASE 76,6D OF SAS AT IOWA STATE UNIVERSITY 

TITLE RAINFALL DATA FOR SPENCER NORTHWEST IOWA ;  
DATA RAIN;  
INPUT YEAR 1-4  Ml  Ô-1 0  M2 11-15 M3 16-20 M4 21-25 vi t j  26-30 M6 31-35 
M7 36-40 M8 41-45 M9 46-50 MIO 51-55 Mi l  56-50 M12 61-65 î  
M13 =  SUM{0F MI -M12)  :  
CARDS;  

DATA SET WORK,RAIN HAS 60 OBSERVATIONS AND 14 VARIABLES.  112 OBS/TRK.  
THE DATA STATEMENT USED 0 .20 SECONDS AND 104K.  

PROC MEANS N MEAN STO SUM USS:  
VAR Ml -Ml  J  ;  
OUTPUT 0UT = STAT1 MEAN= v iMi -MM13 STD= STDMI -  STDM 1 3 ;  

KJ 

DATA SET WORK.STATl  HAS 1 OBSERVATIONS AND 26 VARIABLES.  61 OBS/TRK.  S  
THE PROCEDURE MEANS USED 0 .22 SECONDS AND I28K AND PRINTED PAGE 1 .  

PROC MATRIX;  FETCH X DATA=STATi;  
*  IN THE MATRIX OPERATION Y=J(N, l , l ) ,  N IS  THE NO.  OF OBSERVATIONS IN THE DATA; 
Y=J(60.1 ,1) ;  
P=Y*X ;  OUTPUT P 0UT=5TAT2;  

DATA SET *URK.STAT2 HAS 60 OBSERVATIONS AND 27 VARIABLES.  59  OBS/TRK.  
THE PROCEDURE MATRIX USED 0 .21 SECONDS AND 142K AND PRINTED PAGE 2 .  

DATA 5TAT3;  
MERGE RAIN STAT2;  

DATA SET W0RK.STAT3 HAS 60 OBSERVATIONS AND 41 VARIABLES.  39 OBS/TRK.  
THE DATA STATEMENT USED 0 .13 SECONDS AND 112K.  
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DATA STAT4;  
SET STAT3:  
MACRO CHECK IT  

IF  ( {MEAN-STD/3 )  LE RAIN AND RAIN LE (MEANF3TO/3 )>  THEN MONTH 
IF  ( (MFAN-STD)  LE RAIN AND RAIN LT  (MEAN-STD/3 ) )  THEN MUNTH=•  
IF  (RAIN LT  (MEAN-STO) )  THEN MONTH=*DL) ' ;  
IF  ( (MEAN+STD/3 )  LT  RAIN AND RAIN LE (  ME ANI+•  3  T  D  )  )  THEN MONTH= •  
IF  ( (MEAN+STO)  LT  RAIN)  THEN MONTH=*WW«;  % 

HAIN=M1 ; MEAN=C0L1 : STD=COL14; CHECKIT 
! 

JANUARY=MONTH;  
RAIN=M2 ;  MEAN =  C0L-2  :  STÛ=C0LI5 ;  CHECKI  T  

FEBRUARY=MQNTH;  
RAIN=M3 ;  MEAN=C0L3 :  5TD=C0L16;  CHECKIT  

! 
MARCH^MONTH:  
RAIN=M4 ;  MEAN=C0L4 :  5TD=CÛL17;  CHECKIT  

APRIL=MONTH:  
RAIN=M5 ;  MEAN=C0L5 :  STD=C0L18:  CHECKIT  

MAY=MONTH:  
RAIN=M6 ;  MEAN=C0L6 :  3TD=C0L19;  CHECKIT  

! 
JUNE=MONTH;  
RAIN=M7 ;  MEAN=C0L7 :  STD =  COL20  ;  CHECKIT  

JULY=MONTH:  
RAIN=M3 ;  MEAN=CL1L8 :  STD =  C0L2 I ;  CHECKI  T  

AUGUST =  MONTH *,  
RA IN= M9  ;  MEAN=COL9 :  ST0=C0L22;  CHECKIT  
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5EPT=M0NTH;  
PAIN=Mia;  MEAN=COL10;  STD=C0L23;  CHECKIT 

OCTOBER=MQNTH; 
RAIN=Ml i ;  M£AN=CQLl i ;  5TD=C0L24;  CHECKIT 

N0VEM3Ei^=M0NTH :  
9AIN=V12;  MEAN=C0L12;  STD=CUL25;  CHECKIT 

DECEM3£R=M0NTH; 
R4IN=W13;  MEAN=C0L13;  ST0=C0L26;  CHECKIT 

ANNUAL=MONTH;  

DATA SET W0RK.STAT4 HAS 60 OBSERVATIONS AND 53 VARIABLES.  33 Of lS/TRK.  
THE DATA STATEMENT USED 0 .54 SECONDS AND 112K.  

PROC PRINT;  
VAR YEAR Ml  JANUARY M2 FEBRUARY M3 MARCH M4 APRIL M5 MAY 
M6 JUNE M7 JULY M8 AUGUST M9 SEPT MIO OCTOBER 
Mi l  NOVEMBER M 12 DECEMBER M13 ANNUAL:  

THE PROCEDURE PRINT USED 0 .44  SECONDS AND 116K AND PRINTED PAGES 3  TO 

DRCC FORMAT;  
VALUE $ATT •00»=UDRY '  D«=ORY •  N«=NORMAL •  À '=*ET ' *W'=WWET;  

THE PROCEDURE FORMAT USED 0 .05 SECONDS AND 112K.  

PROC FREQ ;  
FORMAT JANUARY SATT.  FEBRUARY SATT.  MARCH $ATT.  APRIL  $ATT.  MAY £A 

JUNE SATT.  JULY SATT.  AUGUST «ATT.  SEPT SATT.  OCTOBER SATT.  
NOVEMBER SATT,  DECEMBER SATT.  ;  
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TABLES JANUARY*FEQRUARY FEBRUARY*MARCH MARCHtAPRIL 
APRIL *MAY MAY*JUNE JUNE*JULY JULY *AUGUST 4UGJST*SEPT 

SEPT*DCTOBER 0CT03ER*NûVfcM0ER NOVEMBEPtOECE^BER; 

THE PROCEDURE FREQ USED 0 .66  SECONDS AND 142K AND PRINTED PAGES 5  TC I  

DATA STAT3 ;  
SET STAT4;  
RETAIN LAGANNUA;  
OUTPUT ;  
LAGANNUA=ANNUAL:  
KEEP ANNUAL LAG ANNUAÎ  

DATA SET W0RK«STAT5 HAS 60  OBSERVATIONS AND 2  VARIABLES.  1626  OBS/TRK 
THE DATA STATEMENT USED 0 .15  SECONDS AND I I 2K .  

DATA STAT6 (KEEP=ANNUAL LAGANNUA);  
SET STATS;  
IF  _N_ EQ I  THEN DELETE:  

DATA SET W0RK.STAT6 HAS 59  OBSERVATIONS AND 2  VARIABLES.  1628  OBS/TRK 
THE DATA STATEMENT USED 0 .09  SECONDS AND 104K.  

PROC FREQ DATA=STAT6;  
FORMAT LAGANNUA $ATT.  ANNUAL $ATT.  :  
TABLE LAGANNUA*ANNUAL;  

THE PROCEDURE FREO USED 0 .25  SECONDS AND 140K AND PRINTED PAGE 16 .  

SAS USED 142K MEMORY.  

BARR» GOODNIGHT,  SALL AND HELWIG 
SAS INSTITUTE INC.  
O .O.  BOX 10066  
RALEIGH,  N*C.  27605  
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R A I N F A L L  D A T A  F O R  S P E N C E R  N O R T H W E S T  I O W A  1 1 : 2 5  T H U R S D A Y .  

VARIABLE N MEAN STANDARD SUM UNCORRECTED 
DEVIATION SS 

Ml 60 0 .67183333 0.51277739 40 .31000000 42.5951000 
M2 60 0 .91366667 0.71635132 54 .82000000 80.3636000 
M3 60 1 •57600000 1•02201562 94 .56000000 210.6530000 
M4 60 2 •51600000 I.48804980 150 .96000000 510.4586000 
M5 60 3 .56850000 1 .86421868 214 . i 1000000 969.0949000 
M6 60 4 .28683333 2.05233599 257 .21000000 1351.1293000 
M7 60 3 •3641666 7 2.21529758 201 .85000000 968.6021000 
M8 60 3 •63550000 2.17439290 218 .13000000 1071 .9627000 
M9 60 3 .33600000 2.45835290 200 • 16000000 1024.3002000 
MIO 60 1 •72083333 1 .22150961 103 •25000000 265.7091000 
Ml 1 60 1 .29716667 1•0994 80 76 77 •83000000 172.2811000 
M12 60 0 •80983333 0^52694029 48 •59000000 55^7321000 
M13 60 27 •69633333 5^93780076 1661 •78000000 48105.4040000 
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Table B-1, Annual transition matrix for Rock Rapids station, 
Northwest Iowa 

LAGANN'JA ANNUAL 

FREQUENCY 
PERCENT 
ROW PCT 
COL PCT 

DDR Y 

DORY ]DRY 

DRY 

NORMAL 

WET 

WbET 

j  NORMAL 1 WET jafWET )  

0 
0 . 0 0  
0 . 0 0  
0 . 0 0  

1 

1 .35  
5 .56  

12 .50  

4  
5 .41  

22. 22 
50 .00  

2 
2 .70  

1 1 . 1 1  
25 .00  

1 .35  
G.  09  

12 .50  

2 
2 .70  

2 2 . 2 2  
11.11 

6 

8 . 1 1  
33 .  33  
33  .  33  

3  
4 ,  05  

16 .67  
16 .67  

4  
5 .41  

2 2 . 2 2  
2 2  . 2 2  

4 .05  
27 .27  
16 .67  

2 
2 .  70  

2 2 . 2 2  
10 .53  

4  
5 .41  

22. 22 
21 .05  

5  
6 .  76  

27 .  78  
26 .32  

4  
5 .41  

22.  22 
21  -  05  

5 .41  
36 .  36  
21  .05  

4 .05  
33 .33  
16 .67  

4  
5 .41  

22. 22 
2 2 . 2 2  

3  
•4 .05  

16 .67  
16.67 

6 
6 .  76  

27 .78  
27 .  78  

3  
4 .05  

27 .27  
16 .67  

2 
2 .70  

2 2 . 2 2  
18 .13  

1 
4 .05  

1  6 .  67  
27 ,27  

3 
4 .  05  

16 .67  
27 .27  

3  
4 .05  

16 .67  
27 .27  

0 
0. 00 
0. 00 
0 . 0 0  

TOTAL 

TOTAL 8 
10.31 

18 

24 .32  
19  

25 .68  24  
18 

. 32  14  
1 1 

85  1 0 0  

74  
00 
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Table B-2. Annual transition matrix for Sheldon station. Northwest Iowa 

LAGANNUA ANNUAL 

FREQUENCY|  
PERCENT j  
ROW PCT 1 
COL PCT 1D DRY j  DRY 1 NORMAL 1 WET j  WW£T 1 

4-
TOTAL 

DDRY 1 
1  
i  
i  

0 
0 .  00 
0.  00 
0.00 

1 1 
1 1  .89  
1 14 .29 
1 7 .69 

1 3  
i  5.66 
i  42.86 
1 20.00 

1 2 
1 3.77 
1 23.57 
1 16 .67 

1 1 
i  1 .89 
!  14 .29 
1 14 .29 

1 
1 
1 
1 
+  

7 
13.21 

DRY 1 
1 
1 
I  

1 
1 .89 
8  .  33 

16.67 

1 3  
j  5 .66  
1 25 .00 
1 23.08 

1 2  
1 3 .77  
1 16 .67 
1 13 .33 

1 4  
1 7 .55  
i  33.33 
j  33 .33 

1 2  
1 3 .77  
1 16 .67 
1 26 .5  7 

1 
1 
1 
1  

1  2  
22 .64 

NORMAL 1 

1 
I  
1 

2  
3 .  77 

13.33 
33.  33 

1 3  
i  5 .66 
i  2  0 .00 
I  23.08 

1 6  
1 11 .32 
1 40#00 
j  40 .00 

J 3 
1 5 .66 
{ 20=00 
1 25 .00 

1 1  
1 1 .89  
i  6 .67 
1 14 .29 

1 
1 
j  

i  

15 
28.30 

WET 1 
1 
1  
1 

3 
5 .66 

25.  00 
50.00 

!  2  
1 3 .77 
1 16.67 
i  15.38 

1 2 
1 3 .77 
1 16 .67 
1 13.33 

1 2  
j  3 .77  
j  16 .67 
1 16.67 

1 3  
1 5 .66 
j  25 .00 
1 42 .86 

1 
1 
1  
1 

12 
22.64 

WWET 1 
i  
i  
i  

0 
0.00 
0 .00 
0 .  00 

1 4  
1 7 .55 
j 57 .14 
1 30 .77 

1 2 
I  3 .77 
1 28 .57 
1 13.33 

i  1  
1 1  .89  
i  14 .29 
1 8 .33 

1 0  
i  0 .00 
1 0.00 
i  0 .  00 

1 
1 
1  
i  
+  

7 
13.21 

TOTAL 6  13  15  12  7  53  
11 .32  24 .53  28 .30  22 .64  13 .21  100 .00  
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Table B-3 . Annual transition matrix for LeMars station, Northwest lowa 

LAGANNUA ANNUAL 

FREQUENCY|  
PERCENT 1 
ROW PCT 1 
COL PCT 1 DORY 1 DRY 1 NORMAL j  WET j  WfcET 1 TOTAL 

DORY 1 1  !  2 1 4  1 5  1 0 1 1 2  
1 .22 i  2 .44 i  4 .88 j  6.10 1 o

 
# o

 
o

 

i  14 .63 
8 .  33 i  16 .67 1 33 .33 1 41 .67 1 0.00 i  
8 .33 j  10.00 i  20.00 1 25 .OO 1 0.00 1 

DRY i  1  i  5  1 7  1 5  1 2  1 20  
1 .22 1 6 .10  i  8 .54 i  6.10 1 2 .44 24.  39 
5 .  00 i  25 .00 j  35c00 1 25 .00 1 10 .00 1 
S.33 1 25.00 1 35.00 1 25 .00 1 

O
 

o
 

o
 

r o 

1  

NORMAL 1 5 1 3  1 3  1 5  1 4  1 2 0  

6.  1 0  j  3 ,66  !  3 .66 1 6.10 1 4.88 1 24 .39 
25.00 j  15 .00 1 15 .00 1 25.00 1 20 .  00 1 
41.67 j  15.00 1 15 .00 1 25 .00 1 40.  00 1 

« E  r  i  3 i  6 1 4 1 3  i  3 1 1 9  
3 .66 1 7 .  32 1 4 .88  1 3 .66 1 3.66 1 23.17 

15.  79 1 31 .58 j 21 .05 1 15 .79 1 15.  79 1 
25.  00 1 30.00 1 2  0 .00 1 15 .00 i  30.  0  0  1 

WWET 1 2  1 4 1 2  1 2  i  I  1 1 î  
2.44 1 4 .88 i  2.44 1 2 .44  i  1 .  22 1 13.41 

18.  18 j  36 .36 j 13 .18 1 18 .16 1 9 .  09 1 
16.  67 1 20 .00 1 10 .00 1 10 .OO j  10.00 1 

TOTAL 12 20 20 20 1 0  8? 
14 .  63 24.39 24.  39 24.  39 12.20 100.00 
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Table B-4. Annual transition matrix for Sioux City station, Northwest 
Iowa 

LAGANNUA ANNUAL 

FAEQUENCY|  
PERCENT 1 
ROW PCT 1 
COL PCT 1 ODRY 1 DRY INORMAL 1 WET 1 dWET 1 TOTAL 

DORY 1 1 j  1 J 4 1 2 1 4  1 1 2 

1  .  28 1 1.28 1 5 .  13 j  2.56 j  5 .  13 1 15.38 

8 .33 1 8 .33 1 33 .33 1 16.67 1 33 .33 1 
8.  33 1 5.26 j  21-05 1 15 .38 1 26 .57 ! 

DRY j  2  1 4  1 9  1 0  1 3 1 1 8  

2 .56 1 5 .13  1 11 .54 1 0.00 j 3 .85 1 23.08 

11.11 1 22.22 1 50 .00 j  0.00 1 15 .67 1 
16.67 1 21 .05 1 47.37 1 0 .00 1 20.00 1 

NORMAL 1 2  i  4  1 2  j  7  1 4  1 1  9  
2.  56 1 5 .13 1 2 .56 j 8.97 1 5.13 1 24.36 

10.53 1 21.05 1 10 .53 1 36 .84 1 21 .05 1 
16.  67 1 21 .05 1 10 .53  j 53.85 i  26.67 1 

WET 1 4  1 3  1 2 1 2 i  2  1 1 3  

5 .  13 1 3 .85 j  2 .56 1 2 .56 j  2 ,  56 1 16.57 

30.  77 1 23 .08 1 15-38 !  15 .38 1 15.38 1 
33.33 1 15.79 1 10.53 1 15.38 1 13.33 1 

WWET 1 3  j  7  1 - 2  1 2  1 2 } 16 

3 .  85 j 8.97 1 2.56 j  2 .56 1 2 .56 i  20  .  51 
18.  75 1 43.75 1 12 .50 1 12 .50 1 12 .50 i  
25 .  00 i  36 .84 !  10 .53 1 15 .38 1 13 .33 i  

TOTAL 12 19 19 13 15 78 

1  5 .  38 24.36 24.36 16.67 19.23 100.00 
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Table B-5. Annual transition matrix for Storm Lake station. Northwest 
Iowa 

LAGANNUA ANNUAL 

FREQUENCY|  
PERCENT 1 
HOW PCT I  
COL PCT 1 DORY 1 DRY 1 NORMAL 1 WET j  « /WET 1 TOTAL 

DDRY 1 1  1  1 7  1 2  1 1  1 1  2  

1 1  .28  1 .28  1 8 .97 i  2 .56 1 1  .28  1 15 .33 

1 8 -33 8 .33 1 58 .33 1 16 .67 1 8 .33 1 

1 8 .33  7 .14 1 30 .43 j  10 .00 j  11 .11 1 

DRY 1 2  2  1 5  1 2  1 3  1 14  

i  2 .56 2 .56 1 6 .41 1 2 .56 1 3 .85 1 17 .95 

1 14 .29 14.29 1 35-71 1 14 .29 1 21 .43 ! 
1 16 .67 14.29 1 21 .74 1 10 .00 1 33 .33 1 

NORMAL 1 1  4  j  7  1 9  !  2  1 23  

1 I  .28 5 .13 J 8 .97  1 11 .54 1 2 .56 1 29 .49 

1 4 .35 17.39 1 30 .43 1 39 .13 1 8 .70 1 

i  8 .33 28.57 1 30 .43 I  45 .0  0  i  22.22 1 

WET 1 6  3  1 4  i  6  1 1  1 20  

1 7 .69 3  .85  1 5 .13 i  7-69 1 1  .23  1 25 .64 

1 30 .  00 15.00 1 20 .00 1 30 .00 j  5 .00 1 

1 50 .00 21 .43  1 17 .39 1 30 .00 j  11 .11 1 

WWET 1 2  4  1 0  i  1  1 2  ! 9 

1 2.56 5 .13 1 0 .00 j  1 .28 1 2 .56 1 11 .54 

1 22 .22 44 .  44 j  0 .00 1 11 .11 j 22 .22 1 

i  16 .67 28.57 1 0 .00 1 5 .00  1 22 .22 1 

TOTAL 12 14 23 20 9  78 

I  5.38 17.95 29.49 25.64 11.54 100.00 
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Table B-6. Annual transition matrix for Alton station, Northwest lowa 

LAGANNUA ANNUAL 

FREQUENCY 
PERCENT 
ROW PCT 
COL PCT OORY 1 DRY i  NORMAL 1 WET 1 w WET 1 TOTAL 

DDRY 1 1 2 2 1 6 i 0 1 1 1 
1.37 i 2.74 2.74 1 8.22 1 0 .00 1 15.07 
9.09 1 18.18 18. 13 1 54.65 1 0.00 1 
9. 09 1 10.53 16.67 1 25.00 1 0.00 1 

DRY 3 i  8 3 1 4 1 1 i  1 9 
4. 1 I 1 10.96 4.11 1 5.48 1 1.37 1 26. 03 
15. 79 1 42.11 15. 79 i 21.05 1 5.26 1 
27.27 1 42.11 25 . 00 1 16.67 1 I 4. 29 1 

NORMAL 1 1 3 1 1 3 1 3 I  1 I 
1 . 37 j 4.11 1.37 ! 4.11 1 4.11 1 15. 07 
9.09 i 27.27 9. 09 i  27.27 1 27.27 1 
9.09 1 15.79 8.33 1 12.50 1 42.86 1 

WET 4 1 4 5 1 10 1 1 i 24 
5. 48 1 5.48 6.85 ; 13.70 1 1.37 i 32. 88 
16.67 1 16.67 20. 33 1 41.67 1 4. 17 1 
36.36 1 21.05 41 . 57 1 41.67 I  1 4. 29 1 

WWET 2 1 2 1 1 1 1 2 1 8 
2.74 i 2.74 1 . 37 1 1.37 1 2.74 1 10.95 

25. 00 1 25.00 12.50 i 12.50 1 25.00 j 
13.18 I  10.53 8.33 1 4.17 1 28.57 I  

TOTAL 1 1 19 12 24 7 73 
15.07 26. 03 16.44 32. 88 9.59 100.00 
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Table B-7. Annual transition matrix for Onawa station. Northwest Iowa 

LAGANNUA ANNUAL 

FREQUENCY 
PERCENT 
ROW PCT 
COL PCT DORY i  DRY j  NORMAL 1 W£T j r fWET 1 TOTAL 

DORY 0  1 4  4  1 3  t  I  1 1 2 
0 .00 1 5 .06  5 .06 1 3 .80  1 1 .27 1 15 .19 
0 .00 1 33.33 33.  33 1 25 .0  0  1 6 .33  1 
0 .  00 1 22.22 18.18 1 15.79 i  11.11 j  

D«Y 2  1 6 1  i  4  i  4  1 I  7 
2 .  53 1 7 .59 1  .27  1 5 .06 1 5.06 1 21.52 

11.76 1 35 .29 5 .  88 1 23 .53 I  23.53 1 
18 .18  j  33 .33 4 .55 1 21.05 1 44 .44 1 

NORMAL 3  1 4  6  1 7 i  2 1 22 
3.80 1 5 .06 7 .59 1 3 .86 i  2 .53 1 27 .85 

I  3.  64 1 18.18 27.  27 1 31 .82 1 9.09 1 
27.27 1 22 .22 27.27 1 36 .64 1 22 .22 1 

WET 4  1 4  8  1 2 i  1 1 I  9 
5 .  06 1 5.06 10.13 1 2.53 1 1.27 I  24.05 

21.05 i  21 .05 42.11 1 10 .53 1 5 .26 i  
36 .  36 1 22  .  22 36.36 1 10 .53 i  11.11 1 

WWET 2  1 0  3  1 3  1 1  1 5  
2 .  53 1 0 .00 3 .80 1 3 .80 1 1 .27 1 I  1 .39  

22.22 1 C.OO 33.33 1 33.33 j 11 .11 1 
18 .13 1 0 .00 13.  64 1 15 .79 i  11.11 1 

TOTAL 11 13 22 19 9  79 
13.92 22.73 27.85 24.05 1 I  .39 10 0 .00 
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APPENDIX C. 

SCS SOIL CLASSIFICATION 

FOR RAINFALL-RUNOFF RELATIONSHIP 
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Table C-1. Runoff curve numbers for hydrologie soil-cover complexes^ (for watershed conditions II and I = 
0.2S) ® 

(1) (2) (3) (4) 
Treatment Hydrologie Hydrologie soil group 

Land use or cover or practice condition A B C D 

Fallow Straight row Poor 77 86 91 94 
Row crops Straight row Poor 72 81 88 91 

Straight row Good 67 78 83 89 
Contoured Poor 70 79 84 88 
Contoured Good 65 75 82 86 
Contoured and terraced Poor 66 74 80 82 
Contoured and terraced Good 62 71 78 81 

Small grain Straight row Poor 65 76 84 88 
Straight row Good 63 75 83 87 
Contoured Poor 63 74 82 85 
Contoured Good 61 72 79 82 
Contoured and terraced Poor 61 72 79 82 
Contoured and terraced Good 59 70 78 81 

Close-seeded legumes or Straight row Poor 66 77 85 89 
rotation meadow Straight row Good 58 72 81 ! 85 

Contoured Poor 64 75 83 ' 85 
Contoured Good 55 69 78 83 
Contoured and terraced Poor 63 73 80 83 
Contoured and terraced Good 51 67 76 80 

Pasture or range Poor 68 79 86 89 
Fair 49 69 79 84 
Good 39 61 74 80 

Contoured Poor 47 67 81 88 

^From U.S. Soil Conservation Service (112a). 

Close-drilled or broadcast. 
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Table C-1. Continued 

(1) (2) (3) (4) 
Treatment Hydrologie Hydrologi c soil group 

Land use or cover or practice condition A B G D 

Contoured Fair 25 59 75 83 
Contoured Good 6 35 70 79 

Meadow (permanent) Good 30 58 71 78 

Woodlands (farm woodlots) Poor 45 66 77 83 
Fair 36 60 73 79 
Good 25 55 70 77 

Farmsteads 59 74 82 86 

Roads, dirt^ 72 82 87 89 

Roads, hard-surface 74 84 90 92 

^Including right-of-way. 
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Table C-2. Runoff curve number (CN) , conversions and constants^ 

b 
CN for S t Curve starts 

condition CN for AMC values , where P = 

II I III in. (in.) 

(1) (2) (3) (4) (5) 

100 100 100 0.000 0.00 

98 94 99 0.204 0.04 

96 89 99 0.417 0.08 

94 85 98 0.638 0.13 
92 81 97 0.870 0.17 

90 78 96 1.11 0.22 

88 75 95 1.36 0.27 

86 72 94 1.63 0.33 

84 68 93 1.90 0.38 

82 66 92 2.20 0.44 
80 63 91 2.50 0.50 

78 60 90 2.82 0.56 

76 58 89 3.16 0.63 

74 55 88 3.51 0.70 
72 53 86 3.89 0.78 
70 51 85 4.28 0.86 

68 48 84 4.70 0.94 

66 46 82 5.15 1.03 
64 44 81 5.62 1.12 
62 42 79 6.13 1.23 
60 40 78 6.67 1.33 

58 38 76 7,24 1.45 
56 36 75 7.86 1.57 

54 34 73 8.52 1.70 
52 32 71 9.23 1.85 
50 31 70 10.0 2.00 

48 29 68 10.8 2.16 
46 27 66 11.7 2.34 
44 25 64 12.7 2.54 
42 24 62 13.8 2.76 
40 22 60 15.0 3.00 

^From U.S. Conservation Service (112a). 

For CN in column 1. 
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dit 
II 
(1) 

38 
36 
34 
32 
30 

25 

20 
15 

10 
5 

0 
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Continued 

S , 
CN for AMC values , 

I III in. 
(2 )  (3 )  (4 )  

21 58 16.3 
19 56 17.8 
18 54 19.4 
16 52 21.2 
15 50 23.3 

12 43 30 .0  
9 37 40.0 
6  30 56 .7  
4 22 90.0 

2 13 190.0 

0 0 Infinitely 
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APPENDIX D. 

I SU UNIT HYDROMODEL COMPUTER PROGRAM AND THE 

RELATED DICTIONARY OF VARIABLES 
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$J03 ARFA,TIME=5»PAGES=75 
C I.S.U. UNIT HYOROMODEL 
C UNIT HYDROMODELtHYOROLOGIC MASS BALANCE MODEL PROGRAM) 
C .A MODIFIED HYOROMODEL WORKED OUT FOR FLOYD RIVER 
C BASIN AT ALTON,NORTHWEST IOWA. 
C DEPARTMENT OF CIVIL ENGINEERING.IOWA STATE UNIVERSITY, 
C AMES,IOWA,U.S.A. 

COMMON LYR 
INTEGER NAME(20) 
DIMENSION PDH(12),ACI(13>,RIF(13>,F(X3)•CO(13J,PW(13J, 

IPCL(13),OWRZ(13),GWOF( 13),TSRZ( 13),TEMPI 13) , 
2PCUU(13,13).PCU(13.13).PGSC(12,13),AC2(13), 
3WLCJJ(13,13),SPCU(13),SWLCUf13),SMS(13),ASMS(13),DEF(1 
4AGW(13).EMI(13},TIF(13),SWL( 13).SOF(13),SGW(13) ,DGW( 13 
5RES(13),EXPO(13),T0F<13),GWRT(J3),SRTF(13),STW(12) 
DIMENSION PREC( 13) .TAVE{ 13 ) ,PWL( 13) ,ACU( 13) ,RTFI_0( 13), 

1SKW<13),AGSC(13,13).WLCUt13,13) 
DIMENSION WLDEF( 13) ,TSWL( 13) ,SWI_KC 1 2 ) , SSIC ( I 3 ) , 

1 CROP(13),DRES(13)»USW(13),GFLO(13),DCG(13),SSC(13), 
2SMA(13).SMW(13),DSC(13),DSW<13),RTK(12)•GWIN(13), 
3AWLCU(13),PRES(13),EVAP(13>.WGSC(12).WLSM{13), 
4SSW(13).GWTS(13),WLAGW(13).PW1(6)*PHR(13)•AWLSM(13) 
OIMENSIONRIFl(6) .TIF1(6).RES 1(6).ORESl(ô).USWl(6), 

lOWRZl(6),GWOFl(6),PCL1(6),TSRZl(6).SMSK 6),ASMSK6) , 
20EF1(6),ACU1(6)•AGWl(6).RTFLOl(6),EMII(6),SWL1(6). 
3SWLCU1(6)«EXP01(6)«TEMP1(6},8CF(6).WSE1{6),0GW1(6). 
4PREC1C6 Î,GFL0i{6)»DCG1(6),SMA1(6),DSCl(5is SGWi(6)« 
5SPCU116),PWL1(6).SSCIC6),SOFl(6),C01(6),T0F1(6) 
DIMENSION WLAGWl(6).TSWLl(6 3.SSICI(6),WL0EFl(6), 

IGWRTl(6),SRTF1(6),SMW1(6).OSWl(6),VARl(13),G*IN1(6). 
2AWLCU1 (6) ,PRES1(6) ,£VAP1(6) ,WLSM1 (6) ,AW1_SM1 (6) , 
3DET1(13),C0A1{12) 
DIMENSION SUBI(13),SUB2(13),SUBI1<6),SUB21(6), 
IDETll(6) .DET21(6),Q1(13},Q2( 13).Q11{6),021(6). 
2P0B1(12),P0B2C12),P0CI(12),POC2(12),PSM1(12),P5M2(12), 
3CFB1(13),CFA2(13),CFS2<13),CRA1(12),CRA2(12 ) ,CRB1(12), 
4PSU1(13),PSU2(13),SUMP(13)»AP(13).PDEl(13),P0E2(13). 
5GWTS1(6),OET2(13).C0A2(12).CFAl(13),CRS2(12).FSUBl(13) 
DIMENSION aiNC(13),OELZ(13),ZGW(13).ZS(13),DELH(13), 

IGWC0E(7),ZRIV(13),GW(19),QGW(13),GWT£L(13),F0£T1(13), 
2FSU82(13),F0ET2(I3),QIRRl(6),QIRR(13) 

C 
C READ LABELS FOR BUDGET OUTPUT 
C 

D U M = 0  . 0  
READ(5,500) RIF1,TIF1,RES1 
READ(5,500J DRESl,USW1.CD 1 
REAO(5,500) DWRZl,PWi,GWIN1 
REAO(5,500IPCLl,TSRZl,SMS1 
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R E A D ( 5  
R E A O { 5  
R E A D ( 5  
R E A D ( 5  
R E A D t S  
R E A D { 5  
R E A O ( 5  
R E A D ( 5  
R E A O ( 5  
R E A D t S  
R E A D ( 5  
R E A D ( 5  
R E A O ( 5  
R E A O ( 5  
R E A D ( 5  
R E A D ( 5  
R E A O ( 5  
R E A D { 5  

5 0 0 )  A S M S l » S P C U l . D E F l  
5 0 0 )  A C U 1 , P R E C 1 , R T F L 0 1  
5 0 0 )  E M I l . S W L l . P W L l  
5 0 0 )  S W L C U l . E X P O l . S O F l  
5 0 0 )  T E M P I , 8 C F . W S E l  
5 0 0 )  S S C I . S M A l , O S C l  
5 0 0 )  A G M l . S G t t l . O G W t  
5 0 0 )  T O F l . G F L O l » D C G l  
5 0 0 )  G W O F l , G W R T l , S R T F l  
5 0 0 )  O S W l , S M W 1 , G W T S 1  
5 0 0 )  P R E S l , E V A P 1 « W L S M 1  
5 0 0 )  A W L C U l , A W L S M 1 , W L D E F 1  
5 0 0 )  W L A G W l , T S W L 1 , S S I C 1  
5 0 0 )  Q 1 1 , Q 2 1 , S U B 1 1  
5 0 0 )  S U B 2 1 , 0 E T 1 1 , O E T 2 1  
5 0 0 )  Q I R R l  

V A R l  
N A M E  

C  
c 
c 

. 5 0 1  )  
I  R E A D { 5 .  1 0 1  , . =  N D = 9 9 9 )  
5 0 0  F 0 R M A T { 3 ( 6 A 4 , I X ) )  
5 0 1  F 0 R M A T ( 1 3 ( 2 X . A 4 ) )  

1 0 1  F 0 R M A T ( 2 0 A 4 )  

R E A D  I N I T I A L I Z A T I O N  P A R A M E T E R S  

REA0{5,102)STA.NYR,IM,NC1,NC2,MBC,NPft.NRIF,NCD.NPW, 
1NM I,NT IF,NGW IN,NRES,NEXPQ,NGFL 0.NGWOF, I  G,NCU.EFOF, 
2EFCVtCC,CW,CT,EKGW,EKS.TP,TSM 

R E A D ( 5 * 1 0 3 ) S T A l • T A C . T A W L • R E S F , A S M S ( 1 ) . R Z D . S M C l , S S O ,  
1 S G W ( 1 ) • G W C * T K G W . G W C A P  

R E A D ( 5 . 1 0 9 )  B , C O C O , S O . C O M N , S , A L R V , P , Z 8 . V W  
R E A D ( 5 , 1 0 7 )  S T A 2 . T A R E S , A W L S M ( l ) .  W L S f 4 C  ,  P I  N T  ,  Z I  N T  
R E A O ( 5 . 4 4 0 J  ( A P (  I ) , 1 =  1  •  I M  )  
A P ( 1 3 ) = 0 - 0  
D O  4 8 0  1 = 1 , 1 2  

4 8 0  A P ( 1 3 ) = A P ( 1 3 ) + A P ( I )  
R E A D ( 5 . 6 6 7 )  ( C Q A l ( I ) , 1 = 1 , I M )  
R E A O ( 5 , 6 6 7 )  
R E A 0 ( 5 , 6 6 6 )  
R E A D ( 5 . 6 6 6 )  
R E A D < 5 , 6 6 6 )  
R E A D ( 5 , 6 6 6 )  
R E A D ( 5 , 6 6 6 )  
R E A 0 ( 5 , 6 6 6 )  
R E A D { 5 , 6 6 7 )  
R E A D ( 5 , 6 6 7 )  
R E A D ( 5 , 6 6 7 )  
R £ A D ( 5 , 6 6 7 )  
R E A D < 5 , 6 6 6 )  
R E A 0 ( 5 , 6 6 6 }  

( C O A 2 t I ) , 1 = 1 , I M )  
( P O B l ( I ) , 1 = 1 , I M )  
( P 0 B 2 ( I ) , 1 = 1 , I M )  
( P O C l ( I ) , 1 = 1 . I M )  
( P 0 C 2 < I ) . 1 = 1 , I M )  
( P S M l ( I ) , 1 = 1 , I M )  
( P S M 2 ( I ) , 1 = 1 , I M )  
( C F A l [ I ) , 1 = 1 , I M )  
( C F B l ( l ) « I = l * I M )  
( C F A 2 ( I ) , 1 = 1 , I M )  
( C F B 2 ( I ) , 1 = 1 , I M )  
( C R A l { I ) , 1 = 1 , I M 3  
( C R A 2 ( I ) , 1 = 1 , I M )  
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R E A O ( 5 , 6 6 6 )  ( C R B 1 ( I > «  1 = 1 • I M )  
R E A D { 5 , 6 6 6 )  ( C R B 2 ( I ) , I = l t I M )  
R E A 0 ( 5 . 6 6 6 )  ( G W C O E ( I ) . 1  =  1  »  7 )  

4 4 0  F 0 R M A r ( 6 X . 1 2 F 5 . 3 >  
6 6 7  F 0 R M A T ( 6 X , 1 2 F 6 . 2 )  
6 6 6  F 0 R M A T ( 6 X , 1 2 F 5 . 4 )  

P A N T = P I N T  
A S M S ( 1 3 ) = A S M S ( I )  
A * L S M ( 1 3 ) = A W L 5 M ( 1 }  
S G W ( 1 3 ) = S G W ( 1 )  

C  
C  R E A D  I N I T I A L I Z A T I O N  C O E F F I C I E N T S  F O R  T R A N S I T I O N A L  G t f  
C  S T O R A G E  
C  

I F ( I G - E Q . O )  G O  T O  2  
R E A D ( 5 . 1 0 4 ) ( S T W ( I ) , I = 1 , I G )  

1 0 2  F O R M A T ( 2 X , A 4 , I  7 1 2 , I  1 , 2 F 3 . 2 , 5 F 5 . 3 , 2 F 4 . 1  )  
1 0 3  F O R M A T ( 2 X , A 4 , 3 F 8 . 0 « F 6 . 0 , 3 F 5 - 2 . 2 F 8 . 0 . F 5 . 3 , F 3 . 0 )  

1 0 9  F O R M A T { 6 X , 8 F 6 « 4 , F 6 . 0 )  
1 0 7  F O R M A T ( 2 X , A 4 , 5 F 1 0 . 0 )  
1 0 4  F O R M A T ! 1 4 X , 1 2 F 5 - 3 )  

2  Z I M = I M  
I M T = I M + 1  

C  
C  R E A D  C R O P L A N D  G R O U N D W A T E R  R E T U R N  F L O W  C O E F F I C I E N T S  
C  

R £ A D { 5 » 1 0 4 J ( R T K ( I ) , I = 1 , I M )  

C  
C  R E A D  S U R F A C E  S U P P L Y  T O  W E T L A N D  C O E F F I C I E N T S  
C  

R E A D ( 5 , 1 0 4 J ( S W L K ( I ) . 1 = 1  » I M  Î  

C  
C  R E A D  P R O P O R T I O N  O F  D A Y L I G H T  H O U R S  
C  

R E A O ( 5 . 1 3 0 ) ( P D H ( I ) , 1 = 1 , I M )  
1 3 0  F O R M A T ( 1 4 X , 1 2 F 5 . 4 )  

C  
C  R E A D  P R O P O R T I O N  C R O P  A R E A S  A N D  G R O W T H  S T A G E  C O E F F S .  
C  

I F ( N C I > 1 0 , 1 0 . 5  
5  R E A D ( 5 » 1 0 6 ) ( A C 1 { J J , J = 1 , N C 1 I  

1 0 6  F O R M A T * 1 0 X . 1 3 F 5 . 3 )  
J O  6  J = 1 , N C 1  
R E A D ( 5 . 1 0 5 )  C R O P ( J ) . ( A G S C ( I » J ) . I = 1 , I M >  

1 0 5  F 0 R M A T ( 8 X , A 4 . 2 X . 1 2 F 5 . 2 )  
A C 1 ( J ) = T A C * A C 1 ( J )  

6  C O N T I N U E  
C  
C  R E A D  P R O P O R T I O N  P H R E A T O P H Y T E  A R E A S  A N D  G R O W T H  S T A G E  
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C COEFFICIENTS 
C 

10 IF(NC2)15.15»II 
11 REAO(S,106){AC2(JJ,J=1.NC2) 

00 12 J=1.NC2 
READ(5,105)PHH{J).(PGSC<I.J|.1=1,IM) 
AC2(J)=TAWL*AC2(J) 

12 CONTINUE 
C 
C READ RESERVOIR WATER SURFACE GROWTH STAGE COEFFICIENTS 
C 

15 IF(NRES.NE.O) READ(5.105) WTR,(WGSC(I). 1=1.IN) 
C 
C READ INPUT DATA 

DO 700 1=1,19 
700 GW(I)=0. 

C 
IJYR=0 
IF(IG.EQ.O) GO TO 1100 
TRI=1. 
DO 7 I = 1.1 G 

7 TRI=TRI-STW(Ii 
WRITE(6,511)(STW«I),1=1,IG),TRI 

511 FORMAT( IX, 20HTRANSITI0NA1_ GW COEF • 5X , 1 3F8. 31 
DO 3 1=1,IG 

8 STW(I)=STW{I)*SGW<1) 
TRI=SGW(1)*TRI 
WRITE(6,512){STWtI).1=1,IG),TRI 

1100 READ(5,1000,EN0=999) LYR 
IJYR=IJYR+1 
ASMS(1}=ASMS(13) 
AWLSM( 1 )=AWLSM(13) 
SGW<1)=SGW(13) 
00 702 1=1,7 

702 GW(I)=GW(12+1) 
1000 FORMAT! 20A-*) 

DO 703 1=8,19 
703 GW{I)=0. 
C 
C CALCULATE CROPLAND SOIL MOISTURE CAPACITY AND INITIAL 
C SNOW STORAGE ON THE UPLAND AND FLOODPLAIN 
C THE CROPLAND AND WETLAND 
C 

SMC=RZD*SMC1*TAC/12. 
SSC(1)=SS0*TAC/12. 
SSW(1)=SS0»TAWL/12. 

C 
C PRINT ORIGINAL INPUT DATA IF NPR NE 0 
C 
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IF(NPR.EQ.O) GO TO 13 
WRITE(6.507) NAME 

507 FDRMAT(15H1INPUT DATA FOR.20A4) 
WRITE(6« 508>STA,NYR,IM,NC1.NC2.MBC.NPR,NRI F,NCD.NPW. 

1 i S J M  I , NT IF • N6tf I N . NRES , NEXPO . NGFL O, NG WOF « IG. NCU. EFOF , 
2EFCV,CC,CW,CT.EKG*.EKS,TP,TSM 
WRITE!6.509)STAi,TAC»TAWL,RESF,ASMS(1)»RZD•SMC 1.SSO, 

1SGW(1>,GWC»TKâW.GMCAP*SMC*S5C(1)*SSW(I) 
508 FORMAT!IX,A4,2X,I 81 3,2F5.2,3F6•3,2F6.3,2F6.IJ 
509 FORMATd X,A4,2X,3F10.0,F8.0»3F6-2,2F10»0,F8.3,4F10.0) 

WRITE(6,509) STA2,TARES,AWLSM(l>,WLSMC 
WRITE(6,1103 B.C0C0,S0,C0MN,S,ALRy.P,Z8.V*,ZINT 

110 FORMAT!IX,19HHY0RAULIC VARIABLES.5X,8F8.4,F8.0,F8.2) 
13 CONTINUE 
14 IF(NPR.EQ.O) GO TO 200 

512 F0RMAT{1X,23HINITIAL TRANSITIONAL GW ,2X,12F8.0J 
WRITE(6,560) LVR.VARl 
«RITE(6,510)(RTK(1),I=1.IM] 

510 FORMAT(IX.25HCR0P GW-RETURN FLO COEF ,12F8.3) 
WRITE(6,513)(SWLK(I),I=1,IM) 

513 FORMAT!IX,25HSURFACE SUPPLY TO WL C0EF,12F3.3) 
WRITE(6,502)(POH(I », 1 = 1,IM) 

502 FQRMAT!1X,25HPROPORTION DAYLIGHT HOURS,12F8«4) 
WRITE!6,402)!C0A1(I),1=1,IM) 

402 FORMAT!IX,4HCOA1,21X,12F8.4) 
WRITE(6,403)(C0A2(I),1=1,IM) 

403 FORNAT!1X,4HCOA2,21X,12F8.4) 
WRITE!6,404)(P081(I),I=l,IM) 

404 FORMAT!IX.4HPOB1,2lX,l2F8«4) 
WRITE !6,405) ! P0B2( n, 1=1, IM) 

405 FORMAT!IX,4KPOB2,21X,l2F8«4) 
WRITE!6,406)(POCl! I),1 = 1,ÎM) 

406 FORMAT!lX,4HPOCl.21X,12F8.4) 
WRITE(6,407>(P0C2{C),1=1sIM) 

407 FORMAT!IX,4HPOC2,2lX,12F8.4) 
WRITE!6,408)!PSMl(I)•1=1,IM) 

408 F0RMAT(1X,4HPSM1,21X.12F8«4) 
WRITE(6,409}(PSM2!I),1=1 *IM) 

409 F0RMAT!1X,4HPSM2,21X,12F8.4) 
WRITE(6,410)!CFA1( I ).1=1,IM) 

410 F0RMAT!lX,4HCFAi,21X,l2F8«4) 
WRITE ! 6,41i)!CFB1(I I.1 = 1,IM) 

411 FORMAT!IX,4HCFB1,21X912F8.4) 
WRITE!6.412)(CFA2!I),1=1,IM} 

412 F0RMAT!1X,4HCFA2,21X.12F8.4) 
WRITE(6,413){CFB2( I ) .1 = 1,IM) 

413 FORMAT!IX,4HCFB2,21X,12F8«4) 
WRITE!6,437) (CRA1(1),1=1,IM) 

437 FORMAT!1X,4HCRA1,21X.12F8.4) 
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WRITE(6,438) {CRA2II).1=1.IM> 
438 FORMATCIX,4HCRA2,21X.12F8.4} 

WRITE(6,439) (CRBI(I),1=I.IM) 
439 FORMAT(IX,4HCRB1.21X.12F8.4) 

WRITE(6,460) (CRB2tI),1=1,IM) 
460 FORMAK1X,4HCRB2,21X,12F8.4J 

WRITE(6,463) (GBCOE(I),1=1,7) 
463 FORMAT(1X,5HGWCOE,20X,7F8.4) 

IF(NCl«EQ-0) GO TO 91 
WRITE{6,520)(ACKJ) ,J=1.NCI),TAC 

520 FORMAT(HH CROP AREAS , 14F3 . 0 ) 
WRITE(6,504)(J,CROP<J)*(AGSC(I.J)» I = 1.IM),J=1,NC1) 

504 FORMAT(IX.13.1X,A4.2X,7H K COEF .8X,12F8-2) 
91 IF(NC2.EQ«0) GO TO 93 

WRITE(6.521)(AC2(J) , J=1,NC2),TAWL 
521 FORMATdlH WLPH AREAS. 14F8-0 ) 

WRITE(6.504)(J,PHR< J).(PGSC(I.J)•1 = 1,IM).J=I,NC2) 
93 IF(NRES.NE.O) WRITE(6.522) WTR,{WGSCCI).I=1.IM) 

522 FORMAT(IHO,A4,2X,7H K COEF .11X,12F8.2) 
IF(NRIF.NE.O.AND.NPR.NEoO)WRITE(6,506)RIF1 

506 FORMATi25X,6A4) 
200 CALL INPUT(NRIF,1.IM,RIF,NPR) 

IFCNCD.NE.O.ANO.NPR.NE.O)WRXTE<6*506)C01 
CALL INPUTCNCO,l.IM.CO.NPR) 
IF{NPW.NE.O.AND.NPR.NE.0)WRITE(6.506)PW1 
CALL INPUTINPW,1,IM«PW,NPR) 
IF(IJYR.GT.l) ZINT=ZGW(12) 
IF(IJYR.GT.l) PANT=PREC(12) 
IF(IJYR.LE.l) GO TO 462 
AP(13)=AP(13)-AP(12)+PANT 
DO 461 1 = 1 ,IM 

461 AP(I)=PREC(I) 
462 CONTINUE 

IF(NPR.NE«0)»RITE{6,506)PRECl 
CALL INPUTC1.1.IM.PREC.NPR) 
IF<NPR.NE.0)WRITE(6.506)TEMPI 
CALL INPUTC1.1.IM.TEMP.NPR» 
IF(NMI.NE.0.ANO-NPR.NE.0)WRITE(6,506)EMII 
CALL INPUTCNMI.1.IM.EMI,NPR) 
IF(NTIF«NE«0.AND.NPR.NE.O)WftITE(6,506)TIF 1 
CALL INPUT<NTIF,1.IM.TIF.NPR) 
IF(NGWIN.NE.O.ANO.NPR.NE.O)WRITE(6.506)GW1N1 
CALL INPUT(NGWlN.l.IM.GWIN.NPR) 
IF(NR£S.NE*O.AND.NPR.NE.O)WRirE(6.506)RESl 
CALL INPUT(NRES.1,IM.RES.NPRI 
IF(NEXPO.NE-0.AND.NPR.NE-0)WRITE(6,506)EXPO 1 
CALL INPUT(NEXP0,1.IM.EXPO.NPR) 
IF(NGFLO.NE.O.ANO.NPR.NE.O)WRlTEf 6.506)GFLOl 
CALL INPUT(NGFLO,1 »IM.GFLO.NPR) 
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IF(NPR.NE-0)WRITE(6,506)GWOFl 
CALL INPUTÎNGWOF,1.IM.GWOF.NPR) 
WRITE(6,467) 

467 FORMAT<5X,•I».IIX,•ZGW",1 3 X »'ZS',11X,'ZRIV',8X,*OELH', 
lltX.'QGW',14X.'GW'.llX,*aiRR') 

C 
C INITIALIZATION OF ANNUAL COLUMN AND TOTALS 
C 

18 SSC{IMT)=0. 
SSW(IMT)=0. 
SMA(IMT)=0. 
0SC(IMTJ=0. 
SMW(IMT)=0. 
DSW(IMT)=0. 
SGW(IMT)=0 . 
DGW{IMT)=0. 
DCG(IMT)=0. 
DRES(IHTi=0. 
US*(IMT)=0. 
DWRZ(IMT ) = 0 . 
PCL(IMT)=0. 
Ql(IMT)=0» 
Q2<IMT)=0. 
OETl(£MT)=0. 
0ET2(IMT)=0. 
SUBI(IMT>=0. 
SU82(IMT)=0. 
TSRZ<IMT ) = 0. 
5PCU(IMT)=0. 
SPCU(IMT)=0. 
SMS(IMT)=0. 
0EF(IMT)=0. 
ACU{IMT)=0. 
A6W(IMT)=0. 
RTFLQ(IMT)=0. 
SWL(IMT)=0. 
PWL(IMT)=0. 
AWLCU(IMT>=0. 
SWLCUdMD-O. 
TAVE(IMT)=0. 
QIRRtIMT3=0. 
F(IMT)=0. 
SOF(IMT)=0. 
TOF(IMT)=0. 
GWRT(IMT)=0. 
SRTF(IMT)=0. 
GWTSd MT)=0. 
PRES(IMT)=0. 
EVAP(IMT)=0. 
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WLSM(IMT)=0. 
WLAGW(IMT)=0« 
SSIC(IMT)=0. 
TSWL{IMT)=0» 
WLOEF(IMT)=0. 
IF(NC1)21»21.19 

19 DO 20 K=1,NC1 
PCUU(IMT.K)=0. 

20 PCU(IMT,K)=0. 
21 IF(NC2)24.24,22 
22 DO 23 K=1.NC2 

*LCUU(IMT,K)=0. 
73 WLCU(IMT«K)=0. 
24 CONTINUE 

C 
C CALCULATE CHANCE IN RESERVOIR STORAGE. RES(I) IS 
C STORAGE AT THE END OF PERIOD I. 
C 

ORES(1)=Rc5(l)-RESF 
DO 16 1=2,IM 

16 DRESCI)=ReStI)-RES(I-l) 
RES(IMT)=RES(IM) 
DRES(IMT)=RES(IM)-R£SF 
RESF=RES(IM) 

C 
C BUDGET CALCULATIONS BEGIN HERE 
C 

SSC(IJ=0. 
SSW(1)=0. 
EKT=l. 
DO 60 1=1,IM 

C 
C CALCULATE POTENTIAL CONSUMPTIVE USE 
C 

TAVEÎI)=CT*TEMP(I) 
F(I)=TAVECI)*PDH(I) 
IF(MBC.NE.0)EKT=.0173*TAVE(I)-.314 
I F(EKT.LT.0-)EKT=0• 
SPCU(I)=0. 
IFtNCl>29,29.27 

27 DO 28 K=1.NCI 
PCUUd ,K)=F( I )*EKT*AGSC( I,K) 
PCU(I,K)=PCUU<I,K)*(ACl(Kj/12.) 

28 SPCU(I)=SPCU(I)+PCU(I,K) 
29 SWLCU(I)=0. 

IF(NC2)32,32,30 
30 DO 31 K=1,NC2 

WLCUU(I,K)=F(I)*EKT*PGSC(I,K) 
*LCU(I.K)=WLCUU(l.K)«(AC2{K)/12.} 
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31 SWLCU(I)=SWLCU(I)+WLCU(I,K) 
c 
C CALCULATE PRECIPITATION AND EVAPORATION FROM RESERVOIR 
C 

32 EVAP(I)=0. 
P R E S i I ) = 0 .  
IF(NRES«EQ.O) GO TO 205 
EVAP(I)=FII)*EKT*WGSC(I)*TARES/12. 
PRESfI)=PREC(I)»TARES/12. 

C 
C CALCULATE SNOW STORAGE AND SNOW MELT 
205 SMA{I)=0. 

SUBI{I)=0. 
SUB2(I)=0. 
SMW{13=0» 
PSU1(I)=0. 
PSU2tI)=0. 
PDEl(I*=0. 
P0£2(IJ=0. 
DETl(I)=0. 
DET2(I)=0. 
DSC{I)=0• 
O S W ( I ) = 0 .  
Q l ( £ J = 0 .  

0 2 ( 1 ) = 0 .  

GWTSfI)=0. 
PREC(I)=PREC(I)•CRA 1(1) 
SUMP(I)=0.0 
IFd.EQ.l) GO TO 470 
APII3)=AP(13)-AP(I-l)+PREC(i-l) 

470 SOMP(I)=AP(13 J 
IF(I.GT.2.AND.I.LT.8) GO TO 307 
OKI ) = ( EXP(COAI ( I ) ) )*(SUMP( I )**P081( I))*(PREC(I)** 
IPOCl(I)) 
02(1)=(EXP(C0A2(I)Î)*(SUMP(I)**P0B2(I))*{PR£C(I)** 

1P0C2{I)) 
SSCIl+l)=0. 
SSW(I+1)=0. 
GO TO 414 

307 SSCCI + l) = SSC( I)+PREC{I )*TAC/12. 
IF(I.EQ.6.AND.TAVE(I).GT.37.) GO TO 308 
GO TO 309 

3 08 01(1)=(EXP(C0A1(I)))*(SUMP(I)**P0B1(I))*(PREC(I)** 
IPOCl(I)) 
02(1)=(EXP(C0A2(I J))*(SUMP(£)**P082(I) )*(PREC( I) 
1P0C2CI)) 
Q1(I)=Q1(I)+SSC(I 1*12./TAC 
02(1)=02(I)+SS*(I)*12./TAWL 
SMA(I)=SSC(I) 
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SM*( I ) = S S W ( I }  
SUBI(I)=0. 
SUB2{I)=0. 
DETl(I)=0. 
DET2(I)=0. 
DSC(I)=-SSC{I) 
SSC{l+l)=0. 
SSW(I+1)=0. 
OSW(I)=-SSW(I) 
GO TO 414 

3 09 IF(1.EQ.7J SSC( 14-1 ) =SSC( I ) 
OSC(I)=0. 
PSUl(I)=(CFA1(I)*(EXP{CFBlCI)*SSC(1+1)*12./TAC)))/100« 
SUSK I )=PSU1( I )*SSC< I + l ) 
SSC(I+1)=SSC(I+I)-SUB1(I) 
PDElCI»=(CFA2(I)*(EXP<CF82(I)*SSC(I+l)*12./TAC})}/100. 
DETl(I)=PDE1(I}*SSC(I+l) 
SSC(I+l)=SSC(I+l)-DETl(I) 
SMA{ I )=PSMH I)*SSC( I + l } 
SSC(I+l)=SSC{I+l>-SMA{I) 
IF(SSC(I+1J) 320.330.330 

320 DUM2=SUB1(I>+DETlCI)+SMA{I) 
C 0 R S=1.0+{SSCII+lÎ/DUM21 
SUBI(I)=SU8l(I)*CORR 
DETl(I)=DETl(I)*CORR 
SMA(I)=SMA CI)»CORR 
SSC(I+1)-0. 

330 DSC(I)=PREC(1i*TAC/12.-SUB1(I>-DETl(I)-SMA(I) 
IF(I.EQ.7) DSC(n=-SUBl(I)-DETl(I)-SMACI) 
SSWII+l)=SS*(I)+PREC£H*TAWL/12. 
IF{I.EQ.7)SSW£I+I}=SSW{Î) 
DSW(I)=0. 
PSU21I)=(CFA1(I)»(EXP(CFBl(I)*SSW(I+l)*12./TA*L)))/ 

1100 .  
SUB2(I)=PSU2(I)*SS*(I+l) 
SSW(I+1)=SSW<I+l)-SUB2<I) 
P0E21I)=(CFA2tI)*(EXP<CF82(Il»SSW(I+l)•12./TAWLJ))/ 

1 1 0 0  .  
DET2(I)=P0E2(I)*SSW(I+l> 
SStf(I+l)= S S W ( I+l)-DET2(I) 
SMW(I)=PSM2(I)*SSW(I+l) 
SS*(I+1)=SSW(I+1)-SMW(I) 
IF(SSW(I+1)) 340,350.350 

340 DUM2=SU82(I)+0ET2{I)+SMW(I) 
C0RR=1.0 + ( SS*f{ I + l I/DUM2J 
SUB2(I)=SUB2(I3*C0RR 
0ET2{I)=0ET2(I)»CORR 
SMW(I)=SNW(I)*CORR 
SSWCI+l)=0. 
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350 OSW(I)=PREC(I)*TAWL/12.-SUB2(I)-DET2(I)-SMWtI) 
IF{I.EQ.7) OSW(I)=-SUB2<I>-DET2<I)-SMW(I) 
IF(1.NE.7) GO TO 414 
IF(SSCI I+ 1l.GT.O.) SMA<I)=SMA(I } + SSC(I + l) 

IF(SSW(I+1Ï.GT.O.) SMW(I)=SMW(I)+SSW(I+l) 
SSC(I+1)=0. 
SSW(I+l)=0. 
OKI ) = (EXP(COAl ( I ) ) )*(SUNP( I)**POBl ( I ) )*<PREC( I)** 

IPOCl(I)) 
Q2fI)=(EXP(C0A2(I)))*(SUMP(I)**POB2(I))*(PRECCI*** 

1PQC2(I)) 
414 Q1(I)=Q1(I)*TAC/12.+SMA(I) 

Q2{I>=Q2{I)*TAWL/12.+SMW(I) 
PCL(I)=PREC(II»TAC/12, 
PWL(I ) = P R £ C ( l )*TAWL/12. 

C 
C CALCULATE ROOT ZONE SUPPLY 
C 

O W R Z I I )=CD<I)*EFCV»EFOF 
TSRZ(I)=DWRZ(I)+PCL(I)-Ql( I > 
IF(r.EÛ.7) TSRZ(I)=PCL(I)+DETl(I) 
IF(I.EQ.7) OSCd >=-SSC( I ) 
IF{I.GT.2.AN0eI,LT.7) TSRZd)=D*RZ(I)+DETI%Ii 
IF(I.EQ.6.ANO.TAVE(I!=GT.37.) TSRZ(I)=PCL<I)-Ql{i)+ 
1SMA(I) 
SMS(I)=TSRZ(IÏ-SPCU(I> 
RTFLO(IJ=COCI)-OWRZ(I) 
GWRT(I)=RTK(I)*RTFLO(I) 
SRTFCI>=RTFLO(I)-GWRT(I) 
IF{SMS(I))33.33.35 

33 IFISMS(I)+ASMS«1))34.34,35 
34 ASMS(I+1)=0. 

AGW(I ) = 0. 
OEF( I )=SMSU J +ASMS( I ) 
ACUtI)=SPCU(I)+OEF( I) 

GO TO 45 
35 ASMS(I+1)=ASMS(I)»SMS{I) 

IF(ASMS(I+l)-SMC)38.38.40 
38 AGW(I)=0« 

GO TO 43 
40 AGW(I]=ASMS(I+1)-SWC 

ASMS(I+l)=SMC 
43 ACU(I)=SPCU{Ii 

DEF(I)=0. 
C 
C CALCULATE GW TRANSITION AND ADDITION 
C 

45 SG«{I+l)=SGW{I)+AG*(I)+G*RT(I)+GWIN(I) 
IF(SG*(I+l).LT.6*CAP)GO TO 46 
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5G*(I+1)=GWCAP 
46 IFdG.EQ.O) GO TO 65 

TRI=TRI+STW(IGt 
IFdG.EQ.l) GO TO 63 
00 62 IK=2.IG 
K=IG+2-IK 

62 STW(K)=ST*(K-1) 
63 STW( 1 ) = AGW( I ) +GWRT( D+GKflNC I )-G*TS( I ) 

D G * ( i ) = E K G W * T R I  
IFCOGWf D.LT.GWOOGWt 1 )=GWC 
IF(TRI.LT.GWC)OGW< I ) = TRI 
TRI=TRI-DG*(I) 
GO TO 68 

65 DGW(I)=EKGW*SGW(J+l) 
1F{0GW(1).LT.GWC)DG*(I)=GWC 
IF(SG*(I+l).LT.GWC)DGW(I)=SGW(I+I) 

68 SGW(I+l)=SGW(I+i;-OGW(I) 
C 
C CALCULATE RECHARGE T O  OR DISCHARGE FROM THE RIVER 
C 

00 701 K=l,7 
LL=Î +K-1 
G%(LL3=GeiLL;*GWCOE(K)#AG%(IJ 

701 CONTINUE 
C 
C CALCULATE MANAGEABLE SUPPLY AND SURFACE WATER IN 
C CHANNEL 
C 

USW(I)=RIF(I)+TIF(IJ+PRES(I)+PW(I)-EVAP(I)+RES(I)-

10RES(I) 
SSICÎIÎ=USWÎI)-RES(Ii-CO(I)-EXPO(I)-EMI(I)+SRTF(I)+ 
1GWTS(Ii 
SS1C(I )=SSIC( I)+Q2(I)+Ql(I) 

69 WLAGW{I)=0. 
IFCNC2.EQ.0) GO TO 250 

C 
C CALCULATE WETLAND ROOT ZONE STORAGE. CONSUMPTIVE USE, 
C  A N D  A D D I T I O N  T O  G R O U N D W A T E R  
C 

SWL(I)=SWLK(I}»SSICiIJ 
SS IC(I )=SSIC{ I)-SWLfI) 
QIRRd )=0-
IF 11.GT.7-AND.I.LT.12) QIRRd) = (DUM*0.9)*(WLSMC-

1AWLSMCI } >•0.8 
TSWLCI)=S*L(I)+PWL(I)-02(1)+QIRR(I) 
IF(I.E0.7) TSWL(I)=P*L(I)+DET2(I) 
IF(I.EQ.7) DSW(I)=-SSW(I) 
IF(I.GT.2«AND.I.LT.7) TSWLd)=SWL(I)+DET2(I) 
IF(I.E0.6.AN0.TAVE(I).GT.37.) TSWL(I)=PWL(I)-Q2(I)+ 
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1SMW(I) 
WLSM(I}= TSWL(I)-SWLCU(I) 
IFfWLSMd)) 215.215.220 

215 IF(WLSM(I)+AWLSM(I>)216.216«220 
216 AWLSM(I+1)=0. 

WLAGUfd > = 0. 
WLDEF(I>=WLSM(I)+AWLSM(I) 
AWL.CU(I)= S*LCU(I)+WLDEF(I) 

GO TO 250 
220 AWLSM(I + lj= AWLSM(I)+WLSM< I ) 

IF<AWLSM(I+l}-WLSMC) 225.225.230 
225 WLAGW(I)=0. 

GO TO 235 
230 WLAGW(I)= AWLSM(I+1)-WLSMC 

AWLSM(I+1)= WLSMC 
235 AWLCU(I)= SWLCU(I) 

WLOEFd ) = 0. 
250 QINC(I)=(Q1(I>+Q2(liJ/(1.98*30.) 

OELZ<I)=(WLAGW(I)-(PW(I)+QIRR(I)))/{TAWL»P) 
IF(I.GT.l) GO TO 710 
ZGW{I)=ZINT+DELZ(I) 
GO TO 711 

710 ZGW{ I î=ZGtt£ Î-Î )<-OELZ( II 
711 ZS(II=((QINC(I)*COMN)/(8*1.49*50**.5)5**0.6 

ZRIV(I)=Z8+ZS(I) 
OELH( I) = (ZGW( I )-ZRIV{ I» )/( VKK + .5-B/2. ) 
QGW(I)=C0C0*(8+2*ZS(I))$ALRV*5280.*DELH(I 3 
Oa=Ql(I)+Q2(I)+QGW(I) 
IFOQ.LT.O.) QGW< I )=Ql ( I )+Q2CI Î 
DELZ(I)=QGW(I)/(TAWL*P) 
ZGW(i)=ZGW(I)-DELZ(i) 
SSIC4I)=SSIC(I)+QGW(I)+GW(I) 
GWTS(I)=G*RT(I)+OGW(I)+GW(I) 
WRITE(6.77 0) I.ZGW(I),ZS(I).ZRIV(I)«OELH(1).QGW(I), 

IGW(I),QIRR(I) 
77 0 FORMAT!1X,I5,3F1S.2«E15.5.3F15.2) 
C 
C CALCULATE TOTAL OUTFLOW AND CHANGE IN GW STORAGE 
C 

TOF(I)=DGW(I)*WLAGW(I)-PW(I)+SSIC(I) 
C 
C CALCULATE ANNUAL VALUES FOR YEAR 
C 

IF(NRES.EQ.O) GO TO 260 
PRESfIMT)=PRES(IMT)+PRES(I) 
EVAP(IMT>= EVAP(IMT)+EVAP(I) 

260 PCL(IMT)=PCL(IMT)+PCL(I) 
Q1(IWT)=Q1(IMT)+01(I) 
Q2(IMT)=Q2(IMT)+Q2(I) 
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SMS( IMT) = SMS(IMT) + SMS( I} 
TAVE{ IMT>=TAVE(IMT)+TAVE( I )/ZIM 
F(IMT)=FtIMT)fF{Ii 
DWRZ(IMT)=D*RZ(IMT)+DWRZ( I) 
GWRT(IMT)=GWRT{IMT)+GW«T(I) 
SRTF(IMT)=SRTF{IMT)+SRTFfI) 
TSRZ( IMT)=TSRZ( IMT)4-TSRZ( I ) 
RTFLO(IMT)=RTFLO(IMT)+RTFLO(I) 
OEF(IMT)=OEF(IMT)+DEF(I) 
SPCU(IMT)=SPCU{IMT)+SPCU(I) 
ACU(IMT)=ACU(IMTl+ACUII) 
AGW(IMT)=AG*(IMT)+AGW(I) 
SWLCU(IMT)=SWLCU(IMT)+SWLCU(I) 
PWL( IMT)=PW1_( IMT)+PWL( I ) 
TOF(IMT)=TOF(IMT)+TOF(I) 
OSC(IMT)=OSC(IMT)+DSC(I) 
OETl(IMT)=OETl(IMT)+DETl(I) 
DET2(IMT)=DET2(IMT)+DET2(I) 
SUBI(IMT)=SUB1(IMT)+SUB1(I) 
5UB2(IMT)=SU82(IMT)+SUB2<I) 
OStf(IMT)=DS»(IMT)+DS*(I) 
SMA(IMT)=SMA(IMT)+SMA(I) 
SMWCIMT)=SMW(IMT)+SMW(I) 
DGW(IMT)=OGW(IMT)+DGW(I) 
SWL(IMT)=S*L(IMT)+SWL(I) 
TSWL(IMT)=TS*L(IMT)+TSWL(I) 
G*TS(IMTJ=GWTS<IMT)+GWTS(I) 
SSICCIMT)=SSIC(IMT)+SSIC(I) 
QIRR( IMT)=QIRR( IMT) «-QIRRt I ) 
IF(NCl.EQ.O) GO TO 48 
DO 47 K=l.NCl 
PCUU(IMT.K)=PCUU(IMT,K)+PCUU(I*K) 

4 7 PCU(IMT,K)=PCU(IMT,K)+PCU(1,K) 
48 IF(NC2.EQ.O) GO TO 60 

DO 49 L=1,NC2 
WLCUU(IMT,L)=WLCUU(IMT,L]+WLCUU(I,L) 

49 WLCUCIMT,L)=WLCU(IMT,L)+WLCU<I.LJ 
AWLCU(IMT)= AWLCU(IMT)+AWLCU(I) 
WLSM(IMT)=*LSM(IMT)+WLSM<I) 
WLAGW(IMT)=*LAG*(IMT)+WLAGW(I) 
WLOEF(IMT)=WLOEF<IMT)+*LDEF(I) 

60 CONTINUE 
C 
C CALCULATE GW OUTFLOW. SURFACE OUTFLOW AND OIFF BTWN 
C COMPUTED AND GAGED SURFACE OUTFLOW FOR EACH MONTH 
C 

PKGW=0. 
IFCNGWOF.NE.O) GO TO 72 
GWOFCIMT)=TKGW*TOF(IMT) 
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OGX=DGW(IMT) 
1F(0GX.LE.0*) 0GX=1. 
PKGtf=GWOF(IMT>/OGX 

72 DO 61 1=1.IM 
IFCNGWOF.NE.O) GO TO 74 
GWOFCI}=OGW(I)•PKGW 

74 SOF(I)=TOF(I)-G*OF( I)-WL.AGW( I )-OGW( I ) 
IF(SOF(I).LT.O.) SOF(I)=0. 

61 OCG(I)=SOF(IJ-GFLQ(I) 

C 
C CALCULATE ANNUAL VALUES AND ACCUMULATE SUM FOR USW. 
C SOF, AND DCG 
C 

USW(IMT)=R1F(IMT)+RES(IMT)+TIF(IMT1-DRES(IMT) 
SQF(IMT)=TOF(IMT»-GttOF(IMT)-«LAGMCIMT>-OGW(IMTi 
OCG(IMT)=SOF(IMT)-GFLO(IMT) 

C 
C OUTPUT OF MASS BALANCE WATER BUDGET 
C 

a0UM=01RR(IMT) 
dRITE(6.468; ODUM 

468 FaRMAT(91X.F15.2,* INCHES') 
tfRITE(6.1001)NAME 

1001 FORMATdHl .25X«20A4) 
WRITE(6.560)LYR.VARl 

560 FORMATdlH ITEM YEAR « A4 • 11 X * 13( 2X. A4 , 2X) ) 
550 FORMATdH ,6A4,iX « 12Fd . 0 • F9« 0 } 

WRITE(6.550)RîFî,(aiFfI),1=1»IMTÎ 
WRITE(6,550)TIF1,(TIF(I),1=1.IMT) 
WRITE(6.550)PW1,CPW(I},1=1.IMT) 
IFfNRES.EQ.O) GO TO 125 
*RITE(6,550) RES1,(RES(I).I=1.IMT) 
WRITE(6.550) PRESI.(PRESd).1=1.IMT) 
WRITE(6.550) EVAPl,{EVAP(I).I=1.IMT) 
WRITE(6.55 0)0RE31.iDRES(I).I=1.IMT) 

125 WR1T£(6.550)USW1.(USW(1)«1=1.IMT) 
WRITE(6.550)GWIN1.(GWINd).I=1.IMT) 
IF(NCl.EQ.O) GO TO 127 
WRITE(6,550)CDl.CCD(I)•1=1.IMT) 
WRITE(6«550)DWRZ1,(DWRZ(I)•1=1.IMT) 
WRITE(6.550»RTFL01.(RTFLO(I),1=1,IMT) 
WRITE(6,550) Oil,(01(1).1=1,IMT) 
WRITE(6,55 0)SRTF i,£SRTF(I).1 = 1.IMT) 
WRITE(6,550»GWRT1.{GWRT(I).1=1.IMT) 
WRITEC6.55 0)PCL1.tPCLlI).1=1.IMT) 
WRITE(6.550)DSCl,(DSC(I),1=1.IMT) 
WRITE(6.550)SSCI.(SSC(I).1=1.IMT) 
WRITE(6.550) OETll.CDETl(I).1=1.IMT) 
WRITE{6.550) SUB 11•(SUB1(1).1=1.IMT) 
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*RITE(6.550)SMA1.(SMA{I).1=1,IMT) 
WRITEt6.55 0)TSRZi.(TSR2(I 3 .1 = 1.IMT) 
WRITE(6.550)SPCU1.(SPCOÎI).1=1.IMT) 
WRITE(6.55 0>SMSl.(SMS{I),1=1,IMT) 
WRlTE(6,55 0)ASMSl.(ASMS(t).1=1.IMT) 
WRITE(6.550)OeFl.(OEFCI),1=1,IMT) 
WRITE(6,55 0)ACUl,(ACUd),1=1,IMT) 
WRÎTE(6.550)AGW1,(AGW(I).1=1,IMT) 

127 WRITE< 6.550)SGWl,(SGW<I),1 = 1,IMTi 
WRITE(6.550) DET2l,(DET2(I),I=l,IMT) 
WRITE(6.55 0) SUB21,(SUB2{I),1=1,IMT) 
WRITE(6.550)DGW1.(0G*(I),1=1,IMT) 
WRITE{6,550)GWTS1,{GWTS(I),1=1.IMT) 
WRITE(6,550)EMI1,(EMKI),1=1,IMT) 
WRITE(6,550) QIRRl,(OIRRtI),1=1,IMT) 
WRITE{6,550>EXP01.(EXPO(I),1=1.IMT) 
IF(NC2.EQ.0) GO TO 126 
WR£TEC 6,55 0) SWLl,{SWL(I),1 = 1,IMT) 
WRITE(6.550)PWLl,CPWL(I),1=1,IMT) 
WRITE(6,550) 021,(02(1),1=1,IMT) 
WRITEÎ6,550>OSW19(OSW{I),1=1,ÎMT) 
WRITE{6,550)SSC1,t SSW(I),1 = 1,IMT) 
WRITE{6,550)SM%1.(SM%(I),1=1,IMT) 
WRITE(6,550)TSWL1,(TSWLd).1=1,IMT) 
WRITE< 6,550) SWLCUl .(SWLCU(I).1=1 «IMT) 
WRITE (6, 55 0) WLSMl, { WLSM ( I ) , I = 1 , I MT) 
WRITE(6,5503 AWLSMl,(AWLSM(I),1=1,IMT) 
WRITE(6,550) WLDEFl,(WLDEF(I),1=1,IMT) 
WRITE (6,550) AWLCUl. CAWLCUd). 1=1.IMT) 
WRITEC6.550) WLAGWl ,(WLAGW(I).I = 1. IMT) 

126 WRITE{6,55 0)SSIC1.(SSICCI)«1=1,IMT) 
WRITE(6,55 0) TOFl,(TOF(I).1=1,IMT) 
WRITE(6,S50)GWOF1,(GWOF(I),1=1,IMT) 
WRITE(6,550)SOF1,(SOF(I).1=1,IMT) 
WRITE(6,550)GFLOl.(GFLO(I).1=1.IMT) 
WRITE<6.55 0)OCG1,(OC6{I),1=1.IMT) 
IFdG.EQ.O) GO TO 80 
IF(SGW(IMT)3 9999,9999,9998 

9999 00 9997 1=1,IG 
9997 SKW(I)=0. 

SKW( IG+1 )=0. 
GO TO 9996 

9998 CONTINUE 
OO 79 1=1,1G 

79 SKW(I)=STW(I)/SGW(IMT) 
SKW(IG+1)=TRI/SGW(IMT) 

9996 CONTINUE 
WRITE(6,515)(SKW(I),I=1.IG),SKW(IG+1) 

515 FORMAT(1H0.20HFINAL TRANS GW COEF ,5X,13F7.3) 
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*RITE(6,5i6)(STW(I),I=l»IGi.TRI.SGtf(IMTi 
516 F0RMAT(1X.21HFINAL TRANS GW SUBDIV .4X.14F7.0) 

80 IF(NCU.EO.O) GO TO 1100 
C 
C OUTPUT OF CONSUMPTIVE USE DATA IF NCU NE 0 
C 

WRITE{6,I005) 
1005 FORMAT{iHl»50X,28HCONSUMPTIVE USE CALCULATIONS) 

tfRITE{6,1006JLYR«VARl 
1006 F0RMAT(7X,4HYEAR.A4.12X, 13(2X«A4,2X}i 
1010 F0RMAT(1X,6A4,1X,12F8.2,F9.2) 
1011 F0RMAT(1X;I2.1X.A4«2X.15H UNIT USE (IN.).1X•12Fd.2. 

1F9.2) 
1012 FORMAT(IX,12,IX.A4. 2X,14H USE <ACRE-FTJ.2X.12F8.0. 

1F9.0J 
1013 FORMAT(IX.18HAGRICULTURAL CROPS) 
1014 F0RMATf*X,22H*ET LAND PHREATOPHYTES> 

WRITE(6.1010)TEMPI.(TAVE(I).1=1.IMT) 
WRITE(6.1010>BCF.(F([ I). 1=1. IMT) 
IF(NCl.EQ.O) GO TO 160 
WRITE(6.1013) 
00 150 K=l.NCl 
*RITE(6,1011)K,CR0P(K).(PCUU(I.K).I=1,IMT) 

150 WRITE(6.lOl2)K,CROP{K),(PCU{I,K>,1=1,IMT) 
*RITE(6,550)SPCU1,(SPCU(I).1=1,IMT) 
WRITE(6,550)ACUl,{ACU(I).1=1,IMT) 

160 IF(NC2«EQ.O) GO TO 1100 
WRITE(6,1014) 
00 170 K=1.NC2 
WRITE(6,101l)K,PHR(Kj,&WLCUU(I,K),1=1,IMT) 

170 WRITEC6,1012)K,PHR(K),(WLCUfI.K),1=1,IMT) 
WR1TE(6.550>SWLCU1,fSWLCU(I).1=1.IMT) 
WRITE(6,550)AWLCU1,fAWLCUCI),1=1,IMT) 
GO TO 1100 

999 CONTINUE 
STOP 
END 
SUBROUTINE INPUT(N.NYR,IM,Q,NPR) 
COMMON LYR 
DIMENSION Q(13).Fi13),FMT(14) 
IF(N.NE.0)READ(5,100)FMT 

100 FORMAT(20A4) 
IMT=IM+1 
K = 1  

IF(N-1)5,10.15 
5 00 7 1=1,IMT 
7 0(1)=0. 

GO TO 30 
10 L=1 
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C DICTIONARY OF VARIABLES FOR 
C I.S.U. UNIT HYDROMODEL 
C NOTE : 
C 1-THIS DICTIONARY INCLUDES THE VARIABLES USED 
C BASICALLY FOR ORIGINAL HYOROMGDEL. 
C 2-1T INCLUDES VARIABLES LATER ADDED TO DEVELOP 
C I.S.U. UNIT HYDROMODEL FOR FLOYD RIVER BASIN AT ALTON 
C IN NORTHWEST IOWA. 
C 3-IT DOES NOT INCLUDE THE DEFINED COEFFICIENTS, 
C MODIFIERS AND UNITS USED. 
C 4-THE WORDS WETLANDS AND FLOODPLAINS USED INTEK-
C CHANGEABLY HAVE THE SAME MEANING. 
C 5-THE WORDS CROPLANDS AND UPLANDS USED INTER-
C CHANGEABLY HAVE THE SAME MEANING. 
C 
C AC 1 =AREA(ACRES) OF EACH CROP IN UPLANDS 
C AC2 =AREA (ACRES) OF VARIOUS CROPS IN FLOOD PLAIN 
C ACU=ACTUAL CONSUMPTIVE USE (PCU-DEF) 
C AGSC=CROP POTENTIAL C.U. FACTOR FOR BLANKEY CRIDDLE 
C EQU. FOR UPLANDS 
C AGW=AOOITION TO GROUNWATER 
C ALRV = EFFECT IVE LENGTH OF THE RIVER 
C ASMS=ACCUMULATED SOIL MOISTURE STORAGE 
C AWLCU=ACTUAL WETLANDS CONSUMPTIVE USE 
C AWLSM=ACCUMULATED WET LANDS SOIL MOISTURE 
C 3=WIDTH OF RIVER BOTTOM 
C CO=CANAL DIVERSION 
C CQCO=HYDROLIC CONDUCTIVITY 
C COMN=MANNING*S COEFFICIENT 
C CROP=LABELS FOR VARIOUS CROPS USED 
C DCG=PREOICTED OUTFLOW 
C OEF=OEFICIT CONSUMPTIVE USE FROM CROPLAND 
C 0EL2=ELEVATIQN CHANGES IN G.W. TABLE 
C DET=DETENTION 
C DGW=DEEP GROUVDWATER 
C DRES=CHANGE IN RESERVOIR STORAGE 
C OSC=ADDITION TO SNOW PACK ON CROP LANDS 
C DSW=ADDITION TO SNOW PACK ON FLOOD PLAINS 
C DWR2=CANAL DIVERSION TO THE ROOT ZONE:{CD)(EFOV)(EFOF) 
C EMI=MUNICIPAL AND INDUSTRIAL WATER 
C £XPO=EXPORTEO WATER OUT OF BASIN 
C F=AVE. TEMP. *% DAYLIGHT HRS- {BLANNEY-CftIDDLÊ EQU.j 
C GFLO=GAGEO OUTFLOW 
C GW=GROUNWAT£ft REPLENISHED FROM UPLANDS 
C G*IN=GROUN*ATER INFLOW FROM UPSTREAM SUSSASIN 
C GWOF=GROUNWATER OUTFLOW 
C GWRT^GROUNDWATER RETURN FLOW 
C G«TS=GROUNDWATER DISCHARGED TO SURFACE 
C NC1=NUMBER OF CROPS ON UPLANDS 
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C NPR=INPUT PRINT STATEMENT (0.00 NOT PRINT,!,PRINT) 
C P=POROSITY 
C PCL=PRECIPITATION ON CROPLAND 
C PCU=POTENTIAL CONSUMPTIVE USE PER CROP 
C PCUU=POTENTIAL CONSUMPTIVE USE UNITCPER ACRE) PER CROP 
C POH=PERCENT OF DAYLIGHT HOURS 
C PGSC=CROP POTENTIAL CONSUMPTIVE USE FACTOR FOR FLOOD-
C PLAIN 
C PINT=INITIAL PRECIPITATION 
C PHR=PHREATOPHYTE NAME LABEL 
C PRES=PRECIPITATION ON THE RESERVOIR 
C PW=PUMPED WATER 
C PWL=PRECIPITATION ON WET LANDS 
C QGW=VOLUME OF G.W. CQNTRIBUT ION(POSITIVE OR NEGATIVE) 
C QINC=TOTAL SURFACE WATER IN CHANNEL 
C QIRR=IRRIGATION WATER 
C RES=RESERVOIR STORAGE 
C RIF=MEASUREO INFLOW FROM UPSTREAM SUBAREAS 
C RTFLO=RETURNE FLOW FROM IRRIGATION 
C RTK=dONTHLY RETURNE FLOW COEFFICIENT 
C S=DELH=ORIVING FORCE 
C SGW=ACCUMULATEO INTcRFLOW STORAGE (AMOUNT O F  WATER IN 
C THE INTERFLOW BOX 
C SMA=SNOW MELT VOLUME FROM CROP LANDS: =K{TAVE.-TSM)* 
C (SNO* STORAGE) 
C SMS=TOTAL SUPPLY TO ROOT ZONE MINUSE TOTAL PCU FOR 
C UPLANDS(AMOUNT ADDED OR SUBTRACTED FROM ASMS) 
C SMW=SNOW MELT VOLUME FROM FLOOD PLAINS 
C SO=SLOP OF THE RIVER 
C SOF=SURFACE OUTFLOW 
C SPCU=SUM OF POTENTIAL CONSUMPTIVE USE 
C SRTF=SURFACE RETURN FLOW 
C SSC=ACCUMULATEO SNOW PACK VOLUME FROM CROPLAND 
C SSIC=SUM OF SURFACE IN CHANNEL 
C SSW=ACCUMJLATEO SNOB PACK VOLUME ON FLOOD PLAIN 
C STW=AMOUNT OF STORAGE IN ANY LAG BOX OF INTERFLOW 
C SUB=SUBLIMATION 
C SWLK=CO£FFICIENT TO DETERMINE THE AMOUNT OF SURFACE 
C WATER EACH MONTH PASS THRU. WETLAND 
C SWL=SURFACE DIVERSION TO WETLANDS 
C SWLCU=SUM OF WET LANDS CONSUMPTIVE USE 
C TIF=UNMEASURED TRIBUTARY INFLOW 
C TOF=TOTAL OUTFLOW (BOTH SURFACE AND SUBSURFACE) 
C TSRZ=TOTAL SUPPLY AVAILABLE TO ROOT ZONE 
C TSWL=TOTAL SUPPLY AVAILABLE TO WETLAND 
C USW=MANAGEABLE SURFACE WATER 
C VW=EFFECTIVc WIDTH OF FLOODPLAIN 
C WGSC=RESERVOIR EVAPORATION (CALCULATE FROM RESERVOIR) 
C WLAGW=WET LANDAODITION TO GROUND WATER 
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C WLCU=WETLAND CONSUMPTIVE USE PER CROP 
C WLCUU=WET LAND CONSUMPTIVE USE UNIT(PER ACRE)PER CROP 
C WLDEF=WETLAND DEFICIT CONSUMPTIVE USE 
C WLSM=MONTHLY FLOOD PLAINS SOIL MOISTURE STORAGE 
C ZB=ELEVATION OF RIVER BED FROM DATUM 
C ZGW=VELEVATION OF G.W. TABLE AT THE END OF THE MONTH 
C ZINT=INITIAL GROUNDWATER ELEVATION 
C ZRIV=ELEVATION OF WATER SURFACE IN CHANNEL FROM DATUM 
C ZS=STAGE OF WATER IN CHANNEL 

STOP 
END 
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